资源描述:
《初升高——抽象函数绝版例题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、广元凹凸个性化教育初升高数学-第16次课抽象函数绝版例题1.对任意实数x,y,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2,令x=y=0,得:f(0)=0,∴f(1)=,2.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2002)=___
2、______.1解:由g(x)=f(x)+1-x,得f(x)=g(x)+x-1.而f(x+5)≥f(x)+5,所以g(x+5)+(x+5)-1≥g(x)+x-1+5,又f(x+1)≤f(x)+1,所以g(x+1)+(x+1)-1≤g(x)+x-1+1即g(x+5)≥g(x),g(x+1)≤g(x).所以g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1),故g(x)=g(x+1)又g(1)=1,故g(2002)=1.3.f(x)的定义域为,对任意正实数x,y都有f(xy)=f(x)+f(y)且f
3、(4)=2,则(4,.。2000.(,原式=16)5、对任意整数函数满足:,若,则CA.-1B.1C.19D.436、函数f(x)为R上的偶函数,对都有成立,若,则=()(B)A.2005B.2C.1D.07,设函数f(x)定义于实数集上,对于任意实数x、y,f(x+y)=f(x)f(y)总成立,且存在,使得,求函数f(x)的值域。解:令x=y=0,有f(0)=0或f(0)=1。若f(0)=0,则f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数,使得成立矛盾,故f(0)≠0,必有f(0)=1。6可以成功可
4、以失败不可以放弃信王哥得高分广元凹凸个性化教育初升高数学-第16次课由于f(x+y)=f(x)f(y)对任意实数x、y均成立,因此,,又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0.8,设对满足x≠0,x≠1的所有实数x,函数f(x)满足,,求f(x)的解析式。解:----(2)---(3)9,已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).解:易知f(x)是二次多项式,设f(x)=ax2+bx+c(a≠0),代入比较系数得:a
5、=1,b=-2,c=-1,f(x)=x2-2x-1.小结:如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。10,已知是定义在R上的偶函数,且恒成立,当时,,则当时,函数的解析式为(D)A.B.C.D.解:易知T=2,当时,,∴;当时,∴.故选D。11,解:,12,已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式。6可以成功可以失败
6、不可以放弃信王哥得高分广元凹凸个性化教育初升高数学-第16次课14,设f(x)定义于实数集上,当x>0时,f(x)>1,且对于任意实数x、y,有f(x+y)=f(x)f(y),求证:f(x)在R上为增函数。证明:设R上x11,f(x2)=f(x2-x1+x1)=f(x2-x1)f(x1),(注意此处不能直接得大于f(x1),因为f(x1)的正负还没确定)。取x=y=0得f(0)=0或f(0)=1;若f(0)=0,令x>0,y=0,则f(x)=0与x>0时,f(x)>1矛盾,所以f(0)=1,x
7、>0时,f(x)>1>0,x<0时,-x>0,f(-x)>1,∴由,故f(x)>0,从而f(x2)>f(x1).即f(x)在R上是增函数。(注意与例4的解答相比较,体会解答的灵活性)15,已知偶函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有,且当时,(1)f(x)在(0,+∞)上是增函数;(2)解不等式解:(1)设,则∵,∴,∴,即,∴∴在上是增函数(2),∴,∵是偶函数∴不等式6可以成功可以失败不可以放弃信王哥得高分广元凹凸个性化教育初升高数学-第16次课可化为,又∵函数在上是增函数,∴0≠,解
8、得:16,已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-时,f(x)>0.求证:f(x)是单调递增函数;证明:设x1<x2,则x2-x1->-,由题意f(x2-x1-)>0,∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x