欢迎来到天天文库
浏览记录
ID:38559683
大小:38.50 KB
页数:3页
时间:2019-06-14
《18.2矩形(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.2.1矩形(二)教学目标: 1.理解并掌握矩形的判定方法. 2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.教学过程一、引入新课 1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是
2、矩形像框吗?看看谁的方法可行?二、新授课通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)三、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;(×) (2)有四个角是直角的四边形是矩形;(√) (3)四个角都相等的四边形是矩形;(√) (4)对角线
3、相等的四边形是矩形;(×) (5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√) (9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出: (l)所给四边形添加的条件不满足三个的肯定不是矩形; (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(
4、补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴AO=AC,BO=BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴BC=(cm).例3(补充) 已知:如图(1),ABCD
5、的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴ ∠DAB+∠ABC=180°.又AE平分∠DAB,BG平分∠ABC,∴ ∠EAB+∠ABG=×180°=90°.∴ ∠AFB=90°.同理可证∠AED=∠BGC=∠CHD=90°.∴四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).四、随堂
6、练习1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.五、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道
7、理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.课后反思:
此文档下载收益归作者所有