资源描述:
《1.3函数的基本性质——单调性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3函数的基本性质——单调性仁怀市年生产总值统计表生产总值(亿元)年份600400200人数(人)某市日平均出生人数统计表年份xy12yxOy=x+11-1OOyxy=-2x+2xyO如何用x与f(x)来描述上升的图象?Oxy如何用x与f(x)来描述上升的图象?x2x1Oxyy=f(x)x1<x2如何用x与f(x)来描述上升的图象?x2x1Oxyy=f(x)f(x1)f(x2)x1<x2f(x1)<f(x2)如何用x与f(x)来描述上升的图象?在给定区间上任取x1,x2x2x1Oxf(x1)f(x2)x1<x2f(x1)<f(x2)如何用x与f(x)来描述上升的图象?在给定
2、区间上任取x1,x2x2x1Oxf(x1)f(x2)x1<x2f(x1)<f(x2)如何用x与f(x)来描述上升的图象?在给定区间上任取x1,x2函数f(x)在给定区间上为增函数.x2x1Oxf(x1)f(x2)x1<x2f(x1)<f(x2)如何用x与f(x)来描述上升的图象?在给定区间上任取x1,x2如何用x与f(x)来描述下降的图象?x2x1Oxyy=f(x)f(x1)f(x2)函数f(x)在给定区间上为增函数.x2x1Oxf(x1)f(x2)x1<x2f(x1)<f(x2)在给定区间上任取x1,x2如何用x与f(x)来描述下降的图象?x2x1Oxyy=f(x)f(x
3、1)f(x2)函数f(x)在给定区间上为增函数.x2x1Oxf(x1)f(x2)函数f(x)在给定区间上为减函数.x1<x2f(x1)>f(x2)在给定区间上任取x1,x2增函数、减函数的概念:增函数、减函数的概念:一般地,设函数f(x)的定义域为I.1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.增函数、减函数的概念:一般地,设函数f(x)的定义域为I.1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)
4、在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.增函数、减函数的概念:一般地,设函数f(x)的定义域为I.1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.一般地,设函数f(x)的定义域为I.增函数、减函数的概念:1.
5、如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.一般地,设函数f(x)的定义域为I.增函数、减函数的概念:1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f
6、(x1)>f(x2),那么就说f(x)在这个区间上是减函数.增函数、减函数的概念:一般地,设函数f(x)的定义域为I.1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.增函数、减函数的概念:一般地,设函数f(x)的定义域为I.1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么
7、就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.增函数、减函数的概念:一般地,设函数f(x)的定义域为I.1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)