欢迎来到天天文库
浏览记录
ID:32680506
大小:47.95 KB
页数:7页
时间:2019-02-14
《沪教版八年级上册172一般的一元二次方程的解法—知识讲解讲义》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、一元二次方程的解法(二)一般的一元二次方程的解法一知识讲解(提高)【学习目标】1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程;2.掌握运用配方法和公式法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力.培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、一元二次方程的解法一-配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法
2、叫配方法.(2)配方法解一元二次方稈的理论依据是公式:^±20*4^(3)用配方法解一元二次方程的一般步骤:①把原方程化为&I虹Iu■0(.•0)的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法
3、的理论依据是完全平方公式a2±2ab+h2=(a±b)2.要点二、配方法的应用1.用于比较大小:在比较大小屮的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较岀大小.2.用于求待定字母的值:配方法在求值屮的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明屮有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数屮也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非
4、常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们i定要把它学好.要点三、公式法解一元二次方程1.一元二次方程的求根公式x=2rr一元二次方程ai?4-ix+c=#0),当AA0时,1.一元二次方程根的判别式一元二次方程根的判别式:①当A=Aa-4cc>0W,原方程冇两个不等的实数根②当时,原方程有两个相等的实数根斗二号=一刍;Zfl③当&=A1-4t9tr<0W,原方程没有实数根.2.用公式法解一元二次方程的步骤用公式法解关于X的一元二次方程鎖』4-te+c=0(
5、方程化为一般形式;②确定Q、b、c的值(要注意符号);③求出沪—4ac的值;④若护-4“30,则利用公式茶=护-仕求出原方程的解;加若沪-4ocu0,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程c/+加+c=O(QHO),用配方法将其变形为:(兀+上~)2二兰二竺2a40①当△=戸一4心・>0时,右端是正数因此,方程有两个不相等的实根:②当△4ac=0时,右端是零.因此,方程有两个相等的实根:③当△二员-4gcv0时,右端是负数.因此,方程没有实根.【典型例题】类型一
6、、用配方法解一元二次方程&1.用配方法解方程:(2)2x2+7x+3=0.(1)X2—4x—1=0;【答案与解析】(1)移项,得x2-4x=1.配方,Wx2-4x+22=1+4.即(无一2)2=5.直接开平方,得x—2=±厉,X]=2+>/5,X)=2—y/5.(2)移项,得2兀$+73,73方程两边同除以2,得r+-x=--,7(7}配方,得x2+-x+一2(4丿3一一+214丿251675直接开平方,得x—=i—.44【总结升华】方程(1)的二次项系数是1,方程(2)的二次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方吋,方程左右两边同吋加上一
7、次项系数一半的平方,目的是把方程化为(/?1v+z2)2=P(P>0)的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左边的完全平方式屮是两数和的平方还是两数差的平方.举一反三:【变式】用配方法解方程(1)2护十3=5怎【答案】(1)2x2+3=5x2兀2-5x=-3o53对——x=——22255°3.59416-J士丄4431Xx=—=1.2一(2)x2+px^q=O戏+"兀+(£)2=_g+①当p?_4q$o时,此方程有实数解,__p+』p2_4q-p-』p2_4q兀]=~9X2=②当p2-4q<0时,此方程无实数解.类型二.配方法在代数中的应
8、用2.用配方法证明一10^+7兀一4的
此文档下载收益归作者所有