欢迎来到天天文库
浏览记录
ID:29148402
大小:370.50 KB
页数:15页
时间:2018-12-17
《高中数学2.2.3独立重复试验与二项分布学案新人教a版选修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.3 独立重复试验与二项分布1.理解n次独立重复试验的模型.2.理解二项分布.(难点)3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.(重点)[基础·初探]教材整理 独立重复试验与二项分布阅读教材P56~P57,完成下列问题.1.n次独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.2.二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,
2、p),并称p为成功概率.1.独立重复试验满足的条件是________.(填序号)①每次试验之间是相互独立的;②每次试验只有发生和不发生两种情况;③每次试验中发生的机会是均等的;④每次试验发生的事件是互斥的.【解析】 由n次独立重复试验的定义知①②③正确.【答案】 ①②③2.一枚硬币连掷三次,只有一次出现正面的概率为________.【解析】 抛掷一枚硬币出现正面的概率为,由于每次试验的结果不受影响,故由独立重复试验可知,所求概率为P=C2=.【答案】 3.已知随机变量X服从二项分布,X~B,则P(X=2)等于________.【导
3、学号:97270043】【解析】 P(X=2)=C42=.【答案】 [质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]独立重复试验中的概率问题 (1)某射手射击一次,击中目标的概率是0.9,他连续射击三次,且他每次射击是否击中目标之间没有影响,有下列结论:①他三次都击中目标的概率是0.93;②他第三次击中目标的概率是0.9;③他恰好2次击中目标的概率是2×0.92×0.1;④他恰好2次未击中目标的概率是3×0.9×0.12.其中正确结论的序号是_
4、_______(把正确结论的序号都填上).(2)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位):①5次预报中恰有2次准确的概率;②5次预报中至少有2次准确的概率;③5次预报中恰有2次准确,且其中第3次预报准确的概率.【自主解答】 (1)三次射击是三次独立重复试验,故正确结论的序号是①②④.【答案】 ①②④(2)记预报一次准确为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为P=C×0.82×0.23=0.0512≈0.05,因此5次预报中恰有2次准确的概率约为0.05.②“5次预报
5、中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P=C×(0.2)5+C×0.8×0.24=0.00672≈0.01.所以所求概率为1-P=1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99.③说明第1,2,4,5次中恰有1次准确.所以概率为P=C×0.8×0.23×0.8=0.02048≈0.02,所以恰有2次准确,且其中第3次预报准确的概率约为0.02.独立重复试验概率求法的三个步骤1.判断:依据n次独立重复试验的特征,判断所给试验是否为独立重复试验.2.分拆:判断所求事件是否需
6、要分拆.3.计算:就每个事件依据n次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.[再练一题]1.(1)甲、乙两队进行排球比赛,已知在一局比赛中甲队胜的概率为,没有平局.若进行三局两胜制比赛,先胜两局者为胜,甲获胜的概率为________.(2)在4次独立重复试验中,事件A至少发生1次的概率为,则事件A在1次试验中出现的概率为________________________________________________________________________.【解析】 (1)“甲获胜”分两类:①甲连胜两局
7、;②前两局中甲胜一局,并胜最后一局.即P=2+C×××=.(2)由题意知,Cp0(1-p)4=1-,p=.【答案】 (1) (2)二项分布 一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列.【精彩点拨】 (1)首先判断ξ是否服从二项分布,再求分布列.(2)注意“首次遇到”“或到达”的含义,并明确η的取值.再求η取各值的概率.【自主解答】 (1)ξ~B
8、,ξ的分布列为P(ξ=k)=Ck5-k,k=0,1,2,3,4,5.(2)η的分布列为P(η=k)=P(前k个是绿灯,第k+1个是红灯)=k·,k=0,1,2,3,4;P(η=5)=P(5个均为绿灯)=5.故η的分布列为η012345P1.本例属于
此文档下载收益归作者所有