11、集的运算得.故选B.9.【2016高考天津理数】已知集合则=()(A)(B)(C)(D)【答案】D【解析】选D.10.【2015高考福建,理1】若集合(是虚数单位),,则等于()A.B.C.D.【答案】C【解析】由已知得,故,故选C.11.【2015高考江苏,1】已知集合,,则集合中元素的个数为_______.【答案】5【解析】,,则集合中元素的个数为5个.【2017考试大纲】1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基
12、本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.【三年高考命题回顾】纵观前三年各地高考试题,集合仍是每年高考考试的重点,主要以考查集合的概念和集合的运算为主,主要考查两个集合的交集、并集、补集运算,偶尔考查集合中元素个数;从考查形式上看,题型一般是选择题,占5分,常联系不等式的解集与不等关系,试题难度较低,一般出现在前三道题
13、中,常考查数形结合、分类讨论等数学思想方法,而集合的运算是高考考试的重点,且集合在历年的高考中考查的形式与内容几乎没有变化.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式,在2018年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2018高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性大题不多.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型(如集合与映射,集合与自然数集,集合与不等式,集合与方程等);2.重视“数形结合”渗透.“数缺形时少直观,形缺数时难入微”.当你所研
14、究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议便是:画个图,如集合中的韦恩图,数轴,利用图形的直观性,可迅速地破解问题,乃至最终解决问;3.强化“分类思想”应用.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论;4.集合作为一种数学工具,在函数、方程、不等式、排列组合及曲线与方程等方面都有广泛的运用,高考题中常以上面内容为载体,以集合的语言为表现形式,考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现
15、.学法指导:1.活用“定义法”解题,重视“数形结合”:涉及本单元知识点的高考题,综合性大题不多,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了.定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.2.有意识地在各模块复习中渗透数学思维方法:数学是理性思维的学科,高考尤其强调“全卷要贯穿思维能力的考查”简易逻辑用于可以和各章融合命题,正是这一理性思维的体现,学生只有在思维能力上有所提高才能让数学学习有一个质的飞跃。但思维的培养不是一朝一夕的,因此,在第一轮各模块的复习中应尽量加强学
16、生思维能力方面的培养.3.夯实基础的同时加大信息量:夯实双基是提高数学能力的必要条件,只有对数学基础知识和数学规律、性质有一定的了解才谈得上思维能力的开拓,因此必须注重数学基础的学习.同时,对于有能力的学生,加大信息量,在教材之外,适当的把一些数学思想,以及与高