函数的单调性与导数学案

函数的单调性与导数学案

ID:14670985

大小:429.00 KB

页数:5页

时间:2018-07-29

函数的单调性与导数学案_第1页
函数的单调性与导数学案_第2页
函数的单调性与导数学案_第3页
函数的单调性与导数学案_第4页
函数的单调性与导数学案_第5页
资源描述:

《函数的单调性与导数学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§3.3.1函数的单调性与导数【使用课时】:1课时【学习目标】:1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法【学习重点】:利用导数符号判断一个函数在其定义区间内的单调性.【学习方法】:分组讨论学习法、探究式.【学习过程】:一、课前准备(预习教材P89~P93,找出疑惑之处)复习1:以前,我们用定义来判断函数的单调性.对于任意的两个数x1,x2∈I,且当x1<x2时,都有=,那么函数f(x)就是区间I上的函数.复习2:;;;;;;;;二、新课导学学习探究探究任务一:函数的导数与函数的单调性的关系:

2、问题:我们知道,曲线的切线的斜率就是函数的导数.从函数的图像来观察其关系:y=f(x)=x2-4x+3切线的斜率f′(x)(2,+∞)(-∞,2)在区间(2,)内,切线的斜率为,函数的值随着x的增大而,即时,函数在区间(2,)内为函数;在区间(,2)内,切线的斜率为,函数的值随着x的增大而,即0时,函数在区间(,2)内为函数.新知:一般地,设函数在某个区间内有导数,如果在这个区间内,那么函数在这个区间内的增函数;如果在这个区间内,那么函数在这个区间内的减函数.试试:判断下列函数的的单调性,并求出单调区间:(1);(2);(3);(

3、4).反思:用导数求函数单调区间的三个步骤:①求函数f(x)的导数.②令解不等式,得x的范围就是递增区间.③令解不等式,得x的范围就是递减区间.探究任务二:如果在某个区间内恒有,那么函数有什么特性?典型例题例1已知导函数的下列信息:当时,;当,或时,;当,或时,.试画出函数图象的大致形状.变式:函数的图象如图所示,试画出导函数图象的大致形状.例2如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图象.当堂检测1.判断下列函数的的单调性,并求出单调区间:(1

4、);(2);(3);(4).2.求证:函数在内是减函数.学习小结用导数求函数单调区间的步骤:①求函数f(x)的定义域;②求函数f(x)的导数.③令,求出全部驻点;④驻点把定义域分成几个区间,列表考查在这几个区间内的符号,由此确定的单调区间注意:列表时,要注意将定义域的“断点”要单独作为一列考虑.※知识拓展一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.如图,函数在或内的图象“陡峭”,在或内的图象“平缓”.三、课后练习与提高

5、1.若为增函数,则一定有()A.B.C.D.2.(2004全国)函数在下面哪个区间内是增函数()A.B.C.D.3.若在区间内有,且,则在内有()yxOyxOyxOyxOA.B.C.D.A.B.C.D.不能确定4.(2007年浙江卷)设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是()5.已知函数,则()A.在上递增B.在上递减C.在上递增D.在上递减6.函数的单调递增区间是_____________.7.函数的增区间是,减区间是8.已知,则等于9.判断下列函数的的单调性,并求出单调区间:(1);(2);(3).

6、10.已知汽车在笔直的公路上行驶:(1)如果函数表示时刻时汽车与起点的距离,请标出汽车速度等于0的点.(2)如果函数表示时刻时汽车的速度,那么(1)中标出点的意义是什么?11.(08全国高考)已知函数f(x)=x3+ax2+x+1,a∈R.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)设函数f(x)在区间(-,-)内是减函数,求a的取值范围.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。