欢迎来到天天文库
浏览记录
ID:10893199
大小:7.61 MB
页数:59页
时间:2018-07-08
《工科数学分析上学期复习.》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高等数学第一章函数、极限与连续第一节、函数1.1函数分类概念分类类型分类研究函数的主要问题:初等性质:单调性、有界性、奇偶性、周期性。分析性质:极限、连续性、可微性、可积性1.2例题(仅限于对应)引例,求解例1,求。解59例2,且,求,并写出定义域。解,。例3设满足,其中均为常数,且,求的表达式。解,消掉得。小结:上述四例均强调或说体现“对应”,即自变量在抽象函数中的位置与具体函数中的位置相对应。抓住“对应”一点。函数问题基本解决。其他问题从略(本类题考率三年一次)。1.3习题1.设,则1。2.设,则(D)(A)(B)(C)(D)3.设,则(B)(A)0(B)1(C)(
2、D)。4.是(D)59(A)有界函数(B)单调函数(C)周期函数(D)偶函数1.设连续,则下列函数中为偶函数的是(D)。(A)(B)(C)(D)6.设,求。7.设若,求。第二节极限2.1内容总结1.基本型:型,2.等价代换当时,,,3.重要极限()其他极限不存在例:4.用泰勒公式求极限5.用夹逼定理和单调有界原理求极限(主要用于数列极限问题)2.2例题基础题目一、(型);59二、(型);三、(等价代换)1.;2.()3.(注意的处理。,。)4.5.求原式6.求59四、幂指1.2.求3.求五、泰勒公式(注对泰勒公式只需熟悉展开式)六、夹逼定理与单调有界591[]表示取整函
3、数解1当时,,,故当时,,,故从而解2,表示小数部分2.对于数列,已知,,证明。证:由归纳法易证,,又,即当时有下界同时,即单减,从而收敛。设,对递推式取极限得,解得,(舍)。注:为两点递推式,写成连续型函数,若,则为单调数列,若,则不是单调的,据此可以调整证明目标。3.求____594.设,()证明极限存在并求极限证明,假设,则,即数列单调增加,,假设,则,故由单调有界原理存在,设,则,得即=25.已知,,。(1)证明数列数列收敛;(2)求的极限值。解(1),由此可见,设,,,由知,收敛,令,;其中,由,有(1)由,有由(1)-(2)得,解得知收敛,且极限是专题训练类
4、题目一、重要极限与幂指型极限例159例2例3二、等价代换例1例2例3三、反问题例1,求值59解原式,故。例2,求。解原式,由此,有回代原式例3已知,求常数。由原式有,即由罗比塔法则有,由分母极限为零,有再由罗比塔法则有,由分母极限为零,有,因此例4,求常数。解当时,分子,又,故分母,又,故积分极限为零,故b=0,59,从而a=1,例5,求。解当时,,故,则从而,由此。例6.2.3练习59三、连续函数1.定义:,称在点连续。(本质上)2、问题分类1)讨论函数的连续性2)指出函数间断点,且分类3)介值定理应用4)连续性应用()3、例题例1讨论的连续性。解当时,考查三点;(除
5、以上三点外,函数连续);,为第一类间断点;是第一类间断点(可去间断)同法;,是第一类间断点。例2设,讨论的间断点及其类型。59解在点,为可去间断点。在点不存在,为第二类间断点(无穷间断点)。例3设在点连续,求与的关系。解,,于点连续,则。例4.59例5.例6.59例7证明,恰有三个实根证令,则于上连续,而,,,由零点存在定理,,,使即方程有三个实根,又三次方程至多有三个实根,故恰有三实根。方程有根问题当与微分学结合时会很精彩。例8设在上连续,且对都使,证明在上。证:在上连续。则有界,即,使。又,使,故又使,同理,使令,则有。例9设在上连续,且,证明,使。59证设,假设,
6、则,,相加,与矛盾,即恒大于0,不可能。同理(恒)也不可能,即必有大于0的点,也有小于0的点,由连续性和介值定理,,使,即。第二章一元函数微分学及其应用2.1导数概念的三类问题一、“分析”形式问题例1在处可导,求。解原式59例2在处可导,,。求。解原式。例3设在点可导,且,求。分析:例4设有连续导数,且,求。分析:原式例5设是周期为5的连续函数,且于的某邻域内满足……(*)其中是当时比高阶无穷小量,且于处可导,求曲线于点的切线方程。分析:由(*)式,令(凑定义):令,,。切线方程:,。例6.例7.59例8.例9.例10.例11.例12.、例13。练习59二、“隐式”导数
7、问题例1在点连续,且,求。解,由分母,则(连续)则例2设曲线在原点与相切,试求极限。解在点两曲线相切,,。练习已知曲线在原点与相切,求()例3例459三、导数物理解释问题(速度,变化率)(相关变化率)例1有一底半径为Rcm,高为h的锥形容器,现以Acm/s的速率向容器内注水,试求当容器内水位上升到时,水面上升的速率和液面面积的变化率。解设坐标系如图令,则;令,则。注:体会物理解释,“以速率注水”,“水面上升速度““面积变化率“例2一动点P在曲线上运动。已知P点横坐标的速率位30cm/s。当P点运动到点时,从原点到P点的距离的变化率是多少?
此文档下载收益归作者所有