九年级数学正弦和余弦的相互关系公式

九年级数学正弦和余弦的相互关系公式

ID:9672956

大小:84.50 KB

页数:4页

时间:2018-05-05

九年级数学正弦和余弦的相互关系公式_第1页
九年级数学正弦和余弦的相互关系公式_第2页
九年级数学正弦和余弦的相互关系公式_第3页
九年级数学正弦和余弦的相互关系公式_第4页
资源描述:

《九年级数学正弦和余弦的相互关系公式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、正弦和余弦的相互关系公式教案教学目标1.使学生理解正、余弦相互关系的两个公式的推导过程,理解公式成立的条件,并能利用它们及其变形公式解答一些基本问题;2.通过公式的推导过程,培养学生从特殊到一般提出猜想和发现问题的能力;3.培养学生运用知识结构总结问题的能力.教学重点和难点公式的推导和应用是重点;而公式的应用又是难点.教学过程设计一、从学生原有的认知结构提出问题(投影)问:直角三角形有什么性质?(图6-13)①c>a,c>b答:(1)边的关系:②a+b>c,…③a2+b2=c2.(2)角的关系:

2、∠A+∠B=90°.(3)边角关系:sinA=a/c,cosA=b/c,…教师归纳指出:由此可见,在一个直角三角形中,由于三边之间,两个锐角之间和边角之间都有一定的关系,而正弦和余弦又是表示直角边和斜边的比值,因此自然要问:正弦和余弦之间有什么样的相互关系?这就是我们今天所要学习的问题.(板书课题)二、互为余角的正、余弦相互关系公式的教学过程1.复习特殊角三角函数值.(边问边按下列格式打出投影片sin30°=;cos60°=;sin60°=;cos30°=;sin45°=;cos45°=.问:你

3、能发现什么规律?答:sin30°=cos60°,sin60°=cos30°,sin45°=cos45°.2.从特殊到一般提出猜想.猜想:设A和B互为余角,则:sinA=cosB,cosA=sinB.3.证明猜想,形成公式.(采取学生口述,教师板演,在此基础上归纳出互为余的正、余弦相互关系的三种表达形式.)互为余角的正、余弦的相互关系:(1)若∠A+∠B=90°,则sinA=cosB,或cosA=sinB.(2)sinα=cos(90°-α),或cosα=sin(90°-α).(3)数学语言叙述:

4、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.练习1(口答)sin37°=cos;cos62°=sin;sin47°-cos43°=;=.4.应用公式,变式练习.例1(1)已知sinA=1/2,且∠B=90°-∠A.求cosB;(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6'=0.6807,求sin42°54'.分析:观察每小题两锐角的关系均为互余两角,都可运用上述关系式.三、sin2A+cos2A=1的教学过程1.从学生原有的认知结

5、构讲授“sin2A+cos2A=1”公式(投影)如图6-15,△ABC中,∠C=90°.复习:a+b>c,a2+b2=c2.引导:>1,.发现:sinA+cosA>1,sin2A+cos2A=1.由此得到sinA,cosA相互关系的两条性质:(A为锐角)(1)sinA+cosA>1,(了解)(2)sin2A+cos2A=1.(重点)对于(1)要求学生了解;(2)要求学生理解和掌握.所以下面讲公式(2)的变形和应用.2.理解公式sin2A+cos2A=1和几种变形.sin2A+cos2A=1,si

6、n2A=1-cos2A=(1+cosA)(1-cosA),sinA=,cos2A=1-sin2A=(1+sinA)(1-sinA),cosA=.3.解公式成立的条件.4.应用举例,变式练习.练习2(口答)下列等式是否成立?(1)sin230°+cos245°=1;(2)sin237°+sin253°=1;(3)cos256°+sin256°=1;(4)sin246°+cos246°=1;(5)sin2α+sin2(90°-α)=1.例2已知∠A为锐角,且cosA=.求sinA的值.解:因为sin

7、2A+cos2A=1,且∠A为锐角,所以sinA===.教师指出:解题时,根据sin2A+cos2A=1,当∠A为锐角时,已知cosA可求sinA,同样已知sinA也可以求cosA,利用上面的公式,还可以将式子化简.例3化简:sin4A+sin2A·cos2A+cos2A.(∠A为锐角)分析:由于原式中的指数为2和4,且底数为sinA和cosA,于是从结构上联想到“sin2A+cos2A=1”这个公式.解:sin4A+sin2A·cos2A+cos2A=sin2A(sin2A+cos2A)+co

8、s2A=sin2A+cos2A=1例4已知:△ABC中,∠C=90°,AC=2,BC=4,如图6-16.求sinA,cosA,sinB,cosB.解:AB===6,所以sinA==,cosA==,sinB=sin(90°-A)=cosA=,cosB=cos(90°-A)=sina=.这里求cosA,也可用cosA=来求.四、小结(投影)1.先提出以下问题:(1)这节课学习了哪两个公式?它们是根据什么知识推导出来的?(2)应用这两个公式时应注意什么问题?2.在学生回答的基础上教师总结指出:至今为止

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。