西南交通大学理论力学作业答案⑨

西南交通大学理论力学作业答案⑨

ID:9225843

大小:224.10 KB

页数:8页

时间:2018-04-23

西南交通大学理论力学作业答案⑨_第1页
西南交通大学理论力学作业答案⑨_第2页
西南交通大学理论力学作业答案⑨_第3页
西南交通大学理论力学作业答案⑨_第4页
西南交通大学理论力学作业答案⑨_第5页
资源描述:

《西南交通大学理论力学作业答案⑨》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、动量矩定理作业参考答案及解答1.如题图所示,均质细圆环质量为m1,半径为R,其上固接一质量为m2的均质细杆AB,系统在铅垂面以角速度ω绕O轴转动,已知∠CAB=60°,求系统对轴O的动量矩。OCRAB21)环对其质心的转动惯量J=mRC11由转动惯量的平行移轴定理,环对转轴点O的转动惯量22J=mR+J=2mRO11C11122)杆对其质心J=mRC2212由转动惯量的平行移轴定理,杆对转轴点O的转动惯量32211J=J+m(R+R)=R(m+3m)O2C222226112所以J=J+J=(2m+m+3m)ROO1O21226211对轴O的动量矩为L=Jω=Rω(2m+m

2、+3m)OO1226211答案:L=Rω(2m+m+3m)O12262.行星齿轮机构如题图所示,齿轮D固定,轮心为A;行星齿轮B质量为m1,半径为R,对质心B的回转半径为ρ;曲柄AB可看作均质细杆,其质量为m2,长为l。当杆AB以ω转动时,求系统对轴A的动量矩。BAD提示:本题主要工作是齿轮B对轴A的动量矩计算。齿轮B作平面运动,先求出齿轮B的角速度,根据平面运动刚体对轴的动量矩的计算式计算。注意各项的正负号。解:vBBAωBD121)对杆分析,杆对轴A的动量矩L=mRωA1232)对轮分析ωR=ωlBωlω=(顺时针)BR22ρl齿轮对轮心B的动量矩为L=−mρω=−m

3、ωB1B1R2齿轮对轴A的动量矩为L=L+mlωABB122mlmρl2213)系统对轴A的动量矩为L=L+L=(+ml−)ωAA1AB13R22mlmρl221答案:L=(+ml−)ωA13R3.均质水平圆盘重为P1,半径为r,可绕通过其中心O的铅垂轴旋转。一重为12P2的人按AB=s=at的规律沿盘缘行走。设开始时圆盘是静止的,求圆盘的角2速度及角加速度。AOrB12提示:整个系统对轴O的动量矩守恒。注意人按AB=s=at的规律沿盘缘行走2是指相对运动规律。解:以整个系统为研究对象,由于∑MO(F)=0,故整个系统对轴O的动量矩守恒。ds人相对圆盘的速度大小为=v=a

4、trdtds人绝对速度的大小为v=rω−=rω−atadt整个系统对轴O的动量矩守恒1pp212L=L+L=rω+r(ωr−at)=0O122gg2aPtdω2aP22解得ω=,α==r(2P+P)dtr(2P+P)21212aPt2aP22答案:ω=,α=r(2P+P)r(2P+P)21214.在题图所示系统中,均质圆轮质量为m1,半径为r,其上绕一不可伸长的绳子,绳子的一端挂重物A,其质量为m2。一弹簧常数为k的弹簧一端连于轮的点E,另一端连于墙上,处于水平位置。OE=e。图示位置为系统的平衡位置,这时EO线为铅垂直。试求当圆轮偏离平衡位置一微小转角ϕ时,其角加速度是

5、多少?kEeOrArmg2解:平衡时弹簧的伸长为δ=,以平衡位置为坐标原点,角位移的正向0ke如下图所示。FkϕEFxFym1gm2g取整体为研究对象,系统对轴O的动量矩为m12LO=(+m2)rω2由于圆轮偏离平衡位置为一微小转角ϕ,则一般位置时外力对轴O的矩为2∑MO(F)=eFk−rm2g=(δ0−eϕ)ke−rm2g=−keϕ对水平轴O用动量矩定理2dLOm122−2keϕ=∑MO(F)⇒(+m2)rα=−keϕ⇒α=2dt2(m+2m)r12负号表示与转角ϕ的转向相反。5.如题图所示,均质细圆环的质量为m,半径为r,C为质心。圆环在铅垂平面内,可绕位于圆环周缘的

6、光滑固定轴O转动。圆环于OC水平时,由静止释放,求释放瞬时圆环的角加速度及轴承O的反力。rCO提示:先用刚体定轴转动微分方程求出角加速度,然后用质心运动定理求轴承O的反力。解:αFOxOCmgFOy圆环对轴O的转动惯量为2J=2mrO由定轴转动微分方程JOα=∑MO(F)2得2mrα=mgrgα=(顺时针)2r再用质心运动定理x:F=0Oxmgy:F−mg=−mrα=−Oy2解得1F=mg(↑)Oy2g1答案:α=(顺时针),F=0,F=mg(↑)OxOy2r26.如题图所示,有一轮子,轴的直径为50mm,无初速的沿倾角θ=20°的轨道滚下,设只滚不滑,5s内轮心滚过的距

7、离为s=3m。试求轮子对轮心的惯性半径。s提示:本题用刚体平面运动微分方程求解。注意到轮心加速度可由式12s=at求得,且轮心加速度a与轮子角加速度α关系a=rα,其中r为轮轴的2半径。解:12×3621)由s=at2得轮心加速度a===0.24m/s22525由运动学关系a=rα得轮角加速度a0.242α===9.6(rad/s)r0.025α2)由刚体平面运动微分方程得Ffmgsinθ−F=maafmgFN2F×r=mραf222r(gsinθ−a)rtgsinθ22由以上两式消去Ff得ρ==−r=8113(mm)α2sρ

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。