实数可以分为有理数和无理数两类

实数可以分为有理数和无理数两类

ID:8823672

大小:29.79 KB

页数:5页

时间:2018-04-08

实数可以分为有理数和无理数两类_第1页
实数可以分为有理数和无理数两类_第2页
实数可以分为有理数和无理数两类_第3页
实数可以分为有理数和无理数两类_第4页
实数可以分为有理数和无理数两类_第5页
资源描述:

《实数可以分为有理数和无理数两类》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。实数集合通常用字母R表示。而R^n表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数)实数a的相反数是-a,

2、a和-a在数轴上到原点0的距离相等。2)绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:

3、a

4、①a为正数时,

5、a

6、=a(不变)②a为0时,

7、a

8、=0③a为负数时,

9、a

10、=-a(为a的相反数)(任何数的绝对值都大于或等于0,因为距离没有负的。)3)倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)4)数轴定义:如果画一条直线,规定向右的方向为直线的正方向,在其上取原点O及单位长度OE,它就成为数直线,或称数轴。(1)数轴的三要素:原点、正方向和单位长度。(2)数轴上的点与实数一一对应。[1]2分类按性质分类是:正数、负数、0;按定义

11、分类是:有理数、无理数从有理数构造实数实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3,3.1,3.14,3.141,3.1415,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。公理的方法设R是所有实数的集合,则:集合R是一个域:可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。域R是个有序域,即存在全序关系≥,对所有实数x,y和z:若x≥y则x+z≥y+z;若x≥0且y≥0则xy≥0。集合R满足完备性,即任意R的有非空子集S(S∈R,S≠Φ),若S在R内有上界,那么S在R内

12、有上确界。最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如1.5;但是不存在实数上界(因为不是有理数)。实数通过上述性质唯一确定。更准确的说,给定任意两个有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。5相关性质基本运算实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。4图册四则运算封闭性实数集R对加、减、乘、除(除数不为零)四则运

13、算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。有序性实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:ab.传递性实数大小具有传递性,即若a>b,b>c,则有a>c.阿基米德性实数具有阿基米德(Archimedes)性,即对任何a,b∈R,若b>a>0,则存在正整数n,使得na>b.稠密性实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数.唯一性如果在一条直线(通常为水平直线)上确定O作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴

14、。任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集R与数轴上的点有着一一对应的关系。完备性作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:一.所有实数的柯西序列都有一个实数极限。有理数集合就不是完备空间。例如,(1,1.4,1.41,1.414,1.4142,1.41421,...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限√2。实数是有理数的完备化——这亦是构造实数集合的一种方法。极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。二.“完备的有序域”实数集合通常被描

15、述为“完备的有序域”,这可以几种解释。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z+1将更大)。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。