1、第二节 点、直线与圆的位置关系1.(潍坊中考)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是( D )A.10B.8C.4D.2,(第1题图)) ,(第2题图))2.(衢州中考)如图,已知等腰△ABC,AB=BC,以AB为直径的圆交AC于点D,过D作⊙O的切线交BC于点E,若CD=5,CE=4,则⊙O的半径是( D )A.3B.4C.D.3.(2016保定一模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC,BC相切于点D,
2、E.则AD为( B )A.2.5B.1.6C.1.5D.1(第3题图) (第4题图)4.(泰安中考)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论中,正确的个数为( A )①PD与⊙O相切;②四边形PCBD是菱形;③PO=AB;④∠PDB=120°.A.4个B.3个C.2个D.1个5.(上海中考)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( B )A.1
3、4C.1
4、∠B,∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,即OC⊥CD,∴CD是⊙O的切线;(2)∵AD⊥CD,∴∠ADC=∠ACB=90°,又∵∠ACD=∠B,∴△ACB∽△ADC,∴AC2=AD·AB=1×4=4,∴AC=2.8.(台州中考)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( C )A.6B.2+1C.9D.32,(第8题图)) ,(第9题图))9.(攀枝花中考)如图,△ABC中,∠C=90°,AC=3,AB=5,