欢迎来到天天文库
浏览记录
ID:8602483
大小:62.50 KB
页数:3页
时间:2018-04-02
《2017秋人教版数学七年级上册1.2.3《相反数》word教案1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相反数教学目的和要求:1.使学生了解互为相反数的几何意义。2.会求一个已知数的相反数;会对含有多重符号的数进行化简。3.培养学生的观察、归纳与概括的能力;渗透数形结合思想。教学重点和难点:重点:理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数。难点:多重符号的数的化简问题的理解。教学工具和方法:工具:应用投影仪,投影片。方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:1.在数轴上分别找出表示各数的点。6与―6,―与,―1.5与1.5想一想:在数轴上,表示每对数的点有什么相同?有
2、什么不同?2.观察数6与―6,―与,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?(引导学生归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。)(3举出几组具有这种特点的两个数。如2与―2,1.5与―1.5等)二、讲授新课:1.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数(oppositenumber)。理解:代数定义:只有符号不同的两个数互为相反数。0的相反数是0。几何定义:在数轴上原点两旁,离开原点距离相等的两个点所
3、表示的两个数互为相反数。0的相反数是0。(说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。“0的相反数是0”是相反数定义的一部分。这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。)2.例题;例1:判断下列说法是否正确:①―5是5的相反数;()②5是―5的相反数;()③5与―5互为相反数;()④―5是相反数;()⑤正数的相反数是负数,负数的相反数是正数。()解答:√;√;√;×;√。例2:(1)分别写出5、―7、―3、+11.2的相反
4、数;(2)指出―2.4各是什么数的相反数。解:(1)5的相反数是―5。―7的相反数是7。―的相反数是。+11.2的相反数是―11.2。(3·多重符号的化简;)我们通常把在一个数前面添上“―”号,表示这个数的相反数。例如―(―4)=4,―(+5.5)=―5.5,同样,在一个数前面添上“+”号,表示这个数本身。例如+(―4)=―4,+(+12)=12。例3:化简下列各数:(1)―(+10);(2)+(―0.15);(3)+(+3);(4)―(―20)。解:(1)―(+10)=―10。(2)+(―0.15)
5、=―0.15。(3)+(+3)=+3=3。(4)―(―20)=20。(由例题可知,多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。可简写为“奇负偶正”,也可以理解为“同号得正,异号得负”。)(4.五分钟测试:1填空:(1)2.5的相反数书(2)是-100的相反数(3)―是的相反数(4)8.3和互为相反数2化简下列各数;―(+68)=+(―0.75)=+(+9)=―(―5)=)三、课堂小结:1.只有符号不同的两个数互为相反数,其中一个是另一个的相反
6、数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点;2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的;3.正号“+”的功能是对一个数的符号予以确认;而负号“―”的功能是对一个数的符号予以改变。四、课堂作业:课本:P10:1,2,3。《相反数》1.相反数的定义例1.……………例2.……………例3:………………………………………………………………………………………………………………………………………………………………………………
7、…………………………………………………五分钟测试:………………………………………………………………………………………………………………………………………………………………………………………………………………板书设计:教学后记:
此文档下载收益归作者所有