资源描述:
《2001年考研数学一试题答案与解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2001年考研数学一试题答案与解析一、(1)【分析】由通解的形式可知特征方程的两个根是,从而得知特征方程为.由此,所求微分方程为.(2)【分析】gradr=.再求divgradr==.于是divgradr
2、=.(3)【分析】这个二次积分不是二重积分的累次积分,因为时.由此看出二次积分是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为.由累次积分的内外层积分限可确定积分区域:.见图.现可交换积分次序原式=.(4)【分析】矩阵的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.
3、因为,故,即.按定义知.(5)【分析】根据切比雪夫不等式,于是.二、(1)【分析】当时,单调增,(A),(C)不对;当时,:增——减——增:正——负——正,(B)不对,(D)对.应选(D).(2)关于(A),涉及可微与可偏导的关系.由在(0,0)存在两个偏导数在(0,0)处可微.因此(A)不一定成立.关于(B)只能假设在(0,0)存在偏导数,不保证曲面在存在切平面.若存在时,法向量n={3,1,-1}与{3,1,1}不共线,因而(B)不成立.关于(C),该曲线的参数方程为它在点处的切向量为.因此,(C)成立.(3)
4、【分析】当时,.关于(A):,由此可知.若在可导(A)成立,反之若(A)成立.如满足(A),但不.关于(D):若在可导,.(D)成立.反之(D)成立在连续,在可导.如满足(D),但在处不连续,因而也不.再看(C):(当它们都时).注意,易求得.因而,若(C)成立.反之若(C)成立(即).因为只要有界,任有(C)成立,如满足(C),但不.因此,只能选(B).(4)【分析】由,知矩阵的特征值是4,0,0,0.又因是实对称矩阵,必能相似对角化,所以与对角矩阵相似.作为实对称矩阵,当时,知与有相同的特征值,从而二次型与有相
5、同的正负惯性指数,因此与合同.所以本题应当选(A).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如与,它们的特征值不同,故与不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以与合同.(5)【分析】解本题的关键是明确和的关系:,即,在此基础上利用性质:相关系数的绝对值等于1的充要条件是随机变量与之间存在线性关系,即(其中是常数),且当时,;当时,,由此便知,应选(A).事实上,,,由此由相关系数的定义式有.三、【解】原式===.四、【解】先求.求,归结为求.由复合函数求导法,.注意,.因此,.五
6、、【分析与求解】关键是将展成幂级数,然后约去因子,再乘上并化简即可.直接将展开办不到,但易展开,即,①积分得,.②因为右端积分在时均收敛,又在连续,所以展开式在收敛区间端点成立.现将②式两边同乘以得==,,上式右端当时取值为1,于是.上式中令.六、【解】用斯托克斯公式来计算.记为平面上所为围部分.由的定向,按右手法则取上侧,的单位法向量.于是由斯托克斯公式得==.于是.按第一类曲面积分化为二重积分得,其中围在平面上的投影区域(图).由关于轴的对称性及被积函数的奇偶性得.七、【证明】(1)由拉格朗日中值定理,,,使(
7、与有关);又由连续而,在不变号,在严格单调,唯一.(2)对使用的定义.由题(1)中的式子先解出,则有.再改写成.,解出,令取极限得.八、【解】(1)设时刻雪堆的体积为,侧面积为.时刻雪堆形状如图所示,先求与.侧面方程是...作极坐标变换:,则.用先二后一的积分顺序求三重积分,其中,即..(2)按题意列出微分方程与初始条件.(3)体积减少的速度是,它与侧面积成正比(比例系数0.9),即将与的表达式代入得,即.①.②(3)解①得.由②得,即.令,得.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由
8、于是线性组合,又是的解,所以根据齐次线性方程组解的性质知均为的解.从是的基础解系,知.下面来分析线性无关的条件.设,即.由于线性无关,因此有(*)因为系数行列式,所以当时,方程组(*)只有零解.从而线性无关.十、【解】(1)由于,即,所以.(2)由(1)知,那么,从而.十一、【解】(1).(2)==十二、【解】易见随机变量,,相互独立都服从正态分布.因此可以将它们看作是取自总体的一个容量为的简单随机样本.其样本均值为,样本方差为.因样本方差是总体方差的无偏估计,故,即.