立体几何中的向量方法考点解读1

立体几何中的向量方法考点解读1

ID:6721683

大小:323.50 KB

页数:10页

时间:2018-01-23

立体几何中的向量方法考点解读1_第1页
立体几何中的向量方法考点解读1_第2页
立体几何中的向量方法考点解读1_第3页
立体几何中的向量方法考点解读1_第4页
立体几何中的向量方法考点解读1_第5页
资源描述:

《立体几何中的向量方法考点解读1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、基础梳理1.空间向量的坐标表示及运算(1)空间向量的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则

2、a

3、==,cos〈a

4、,b〉==.设A(a1,b1,c1),B(a2,b2,c2),则dAB=

5、

6、=.2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量如图所示,点P在l上的充要条件是:存在唯一实数t使=+ta(*)其中a叫直线l的方向向量,t∈R,在l上取=a,则*可化为=+t或=(1-t)+t.②平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为(2)用向量证明空间中的平行关系①设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.②设直线l的方向向量为v,与平面α共

7、面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=xv1+yv2.③设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.④设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.(3)用向量证明空间中的垂直关系①设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.②设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.③设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.10(4)点面距的求法如图,设AB为平面α的一条斜线段,n为平面α的法向量,则B到平面

8、α的距离d=.一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化:(1)以原点为起点的向量,其终点坐标即向量坐标;(2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题.三种方法主要利用直线的方向向量和平面的法向量解决下列问题:(1)平行(2)垂直(3)点到平面的距离求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.双基自测1.两不

9、重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则l1与l2的位置关系是(  ).                   A.平行B.相交C.垂直D.不确定解析 ∵v2=-2v1,∴v1∥v2.答案 A2.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n=(6,-3,6),则下列点P中在平面α内的是(  ).A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)解析 ∵n=(6,-3,6)是平面α的法向量,∴n⊥,在选项A中,=(1,4,1),∴n·=0.答案 A3.(2011·唐山月考)

10、已知点A,B,C∈平面α,点P∉α,则·=0,且·=0是·=0的(  ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由,得·(-)=0,即·=0,亦即·=0,反之,若·=0,则·(-)=0⇒·=·,未必等于0.答案 A4.(人教B版教材习题改编)已知a=(-2,-3,1),b=(2,0,4),c10=(-4,-6,2),则下列结论正确的是(  ).A.a∥c,b∥cB.a∥b,a⊥cC.a∥c,a⊥bD.以上都不对解析 ∵c=(-4,-6,2)=2(-2,-3,1)=2a,∴a∥c,又a·b=-2×2+(-3)×0+1×4=0,∴

11、a⊥b.答案 C5.(2012·舟山调研)已知=(2,2,1),=(4,5,3),则平面ABC的单位法向量是________.解析 设平面ABC的法向量n=(x,y,z).则即令z=1,得∴n=,∴平面ABC的单位法向量为±=±.答案 ±  考向一 利用空间向量证明平行问题【例1】►如图所示,在正方体ABCDA1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.[审题视点]直接用线面平行定理不易证明,考虑用向量方法证明.证明 法一 如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。