高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx

高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx

ID:62554966

大小:71.42 KB

页数:6页

时间:2021-05-12

高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx_第1页
高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx_第2页
高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx_第3页
高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx_第4页
高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx_第5页
资源描述:

《高中数学(选修Ⅱ)第2章极限(第10课时)函数的连续性.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品资源课题:2.5函数的连续性教学目的:1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续.2.要会说明函数在一点不连续的理由.3.要了解并掌握函数在开区间或闭区间连续的定义.4.要了解闭区间上连续函数的性质,即最大值最小值定理教学重点:函数在一点连续必须满足三个条件.教学难点:借助几何图象得出最大值最小值定理.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本节教学知识点有函数在一点连续满足的三个条件,函数在一点连续概念,函数在开区间和闭区间连续的定义,函数在闭区间上有最大、最小值的定义,最大最小值定理函数的连续性是建

2、立在极限概念基础上的,又为以后微积分的学习做铺垫,它是承上启下的.函数在一点连续必须满足三个条件,这是要学生重点掌握的内容.函数在区间连续的定义也是建立在一点连续的基础上的.借助函数的几何图象得到闭区间上连续函数的一个性质,即最大值最小值定理.函数在一点连续必须满足三个条件,缺一不可.如何得出这三个条件,可以借助函数图象,让学生观察、总结出来.同样借助几何图象得出最大值最小值定理.在学生已掌握极限概念的基础上,并通过分析函数图象,让学生主动地总结出函数在一点连续的三个条件及概念.以及通过区间是由点组成的,进行概念的顺应,得出函数在区间上连续的概念.让学生主动地学习.

3、教学过程:一、复习引入:1.limf(x)alimf(x)limf(x)axx0xx0xx0其中limf(x)a表示当x从左侧趋近于x0时的左极限,limf(x)a表xx0xx0示当x从右侧趋近于x0时的右极限2.我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是欢下载精品资源8

4、毛钱邮票,21克~30克是1元,31克~40克是1.2元)等等.这就要求我们去研究函数的连续与不连续问题二、讲解新课:1.观察图像如果我们给出一个函数的图象,从直观上看,一个函数在一点x=x0处连续,就是说图象在点x=x0处是不中断的.下面我们一起来看一下几张函数图象,并观察一下,它们在x=x0处的连续情况,以及极限情况.分析图,第一,看函数在x0是否连续.第二,在x0是否有极限,若有与f(x0)的值关系如何:图(1),函数在x0连续,在x0处有极限,并且极限就等于f(x0).图(2),函数在x0不连续,在x0处有极限,但极限不等于f(x0),因为函数在x0处没有定

5、义.图(3),函数在x0不连续,在x0处没有极限.图(4),函数在x0处不连续,在x0处有极限,但极限不等于f(x0)的值.函数在点x=x0处要有定义,是根据图(2)得到的,根据图(3),函数在x=x0处要有极限,根据图(4),函数在x=x0处的极限要等于函数在x=x0处的函数值即f(x0).函数在一点连续必须满足刚才的三个条件..函数f(x)在点x=x0处连续必须满足下面三个条件.(1)函数f(x)在点x=x0处有定义;(2)limf(x)存在;xx0(3)limf(x)=f(x0),即函数f(x)在点x0处的极限值等于这一点的函数值.xx0如果上述三个条件中有一

6、个条件不满足,就说函数f(x)在点x0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义.2.函数在一点连续的定义:如果函数f(x)在点x=x0处有定义,limf(x)存在,xx0且limf(x)=f(x0),那么函数f(x)在点x=x0处连续.xx0由第三个条件,limf(x)=f(x0)就可以知道limf(x)是存在的,所以我们下定xx0xx0义时可以再简洁一点.函数f(x)在点x0处连续的定义.欢下载精品资源如果函数y=f(x)在点x=x0处及其附近有定义,并且limf(x)=f(x0),就说函xx0数f(x)在点x0处连续.那怎么根据在一点连续的

7、定义来定义在一个开区间(a,b)内连续的定义.区间是由点构成的,只要函数f(x)在开区间内的每一个点都连续,那么它在开区间内也就连续了.3.函数f(x)在(a,b)内连续的定义:如果函数f(x)在某一开区间(a,b)内每一点处连续,就说函数f(x)在开区间(a,b)内连续,或f(x)是开区间(a,b)内的连续函数.f(x)在开区间(a,b)内的每一点以及在a、b两点都连续,现在函数f(x)的定义域是[a,b],若在a点连续,则f(x)在a点的极限存在并且等于f(a),即在a点的左、右极限都存在,且都等于f(a),f(x)在(a,b)内的每一点处连续,在a点处右极

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。