欢迎来到天天文库
浏览记录
ID:62532853
大小:65.52 KB
页数:3页
时间:2021-05-12
《勾股定理的发现和发展史.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、勾股定理的发现和发展史中国最早的一部数学著作一一《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形矩'得到的一条直角边勾’等于3,另一条直角边股’等于4的时候,那么它的斜边弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早
2、在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾八2+股八2二弦八2亦即:aA2+bA2=cA2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话
3、,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦二(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早
4、就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:4X(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)赵爽的这个证明可谓别具匠心,极富创新意识。他
5、用几何图形的截、害U、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的形数统一”的思想方法,更具有科学创新的重大意义。事实上,形数统一”的思想方法正是数学发展的一个极其重要的条件。正如
6、当代中国数学家吴文俊所说:在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的…十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”
此文档下载收益归作者所有