数列证明题型总结(教师版)附答案.docx

数列证明题型总结(教师版)附答案.docx

ID:62242904

大小:155.41 KB

页数:29页

时间:2021-04-22

数列证明题型总结(教师版)附答案.docx_第1页
数列证明题型总结(教师版)附答案.docx_第2页
数列证明题型总结(教师版)附答案.docx_第3页
数列证明题型总结(教师版)附答案.docx_第4页
数列证明题型总结(教师版)附答案.docx_第5页
资源描述:

《数列证明题型总结(教师版)附答案.docx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、一、解答题:1.在数列{an}中,a1=1,an+1=2an+2n.an(Ⅰ)设bn=2n-1,证明:数列{bn}是等差数列;(Ⅱ)求数列{an}的前n项的和Sn.【答案】an+1nan+1-2ann(Ⅰ)因为bn+1-bn=n-a2=122n-=2n=n12所以数列{bn}为等差数列(Ⅱ)因为bn=b1+(n-1)×1=n所以an=n·2n-1所以Sn=1×20+2×21+⋯+n×2n-12Sn=1×21+2×22+⋯+n×2n两式相减得Sn=(n-1)·2n+12.在数列{an}中,a1111=,an+1=an+n+1.

2、222(Ⅰ)设b=2a,证明:数列{b}是等差数列;nnnn(Ⅱ)求数列{a}的前n项和S.nn【答案】11(Ⅰ)由an+1=an+n+1,22得2n+1n+1nn+1n+1n+1,a=2ab=b则{bn}是首项b1=1,公差为1的等差数列.故bn=n,an=2nn.111+⋯+(n-1)×11n+2×+3×n1+n×n(Ⅱ)S=1×232222-2111111Sn=1×2+2×3+3×4+⋯+(n-1)×n+n×n+1222222两式相减,得:11+1+1+⋯+1-nn+2S=222232n2n11(1-1n)n1n22=

3、1-2n+1=1-2n-2n+11-21/181nSn=2-2n-1-2n3.数列{an}的各项均为正数,前n2*nnn项和为S,且满足4S=(a+1)(n∈N).(Ⅰ)证明:数列{a}是等差数列,并求出其通项公式a;nn(Ⅱ)设bn=an+2an(n∈N*),求数列{bn}的前n项和Tn.【答案】(Ⅰ)n=1时,4a=(a+1)22-2a+1=0,即a=1?a11111n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2=a2n-a2n-1+2an-2an-122-2a-2a=0-an-1?annn-1

4、?(an+an-1)[(an-an-1)-2]=0∵an>0∴an-an-1=2故数列{an}是首项为a1=1,公差为d=2的等差数列,且an=2n-1(n∈N*)(Ⅱ)由(Ⅰ)知bn=an+2an=(2n-1)+22n-1∴Tn=b1+b2+⋯+bn=(1+21)+(3+23)+⋯+[(2n-1)+22n-1]=[1+3+⋯+(2n-1)]+(21+23+⋯+22n-1)=n2+2(1-22n)=22n+1+n2-2=22n+1+3n2-2-433314.数列{an}的各项均为正数,前nnn*).n项和为S,且满足2S=a

5、+1(n∈N(Ⅰ)证明:数列{a}是等差数列,并求出其通项公式a;nnn*),求数列{b}的前n项和T.(Ⅱ)设b=a·2(n∈Nnnnn【答案】(Ⅰ)由2Sn=an+1(n∈N*)可以得到4Sn=(an+1)2(n∈N*)1=(a12?a1211n=1时,4a+1)-2a+1=0,即a=1n≥2时,4annn-1n+1)2-(an-12=4S-4S=(a+1)22=an-an-1+2an-2an-122?an-an-1-2an-2an-1=0?(an+an-1)[(an-an-1)-2]=0∵an>0∴an-an-1=2故

6、数列{an}是首项为a1=1,公差为d=2的等差数列,且an=2n-1(n∈N*)2/18nnn=(2n-1)·2n(Ⅱ)由(Ⅰ)知b=a·212)+⋯+[(2n-3)n-1]+n∴Tn=(1·2)+(3·2·2[(2n-1)·2]23nn+1]则2Tn=(1·2)+(3·2)+⋯+[(2n-3)·2]+[(2n-1)·2两式相减得:12nn+1]-Tn=(1·2)+(2·2)+⋯+(2·2)-[(2n-1)·22(1-2n)+1]=2·-2-[(2n-1)·2n1-2n+1-6=(3-2n)·2∴Tn=(2n-3)·2n+

7、1+6(或Tn=(4n-6)·2n+6)5.n32+7*已知数列{an2n2n(n∈N).},其前n项和为S=(Ⅰ)求a1,a2;(Ⅱ)求数列{a}的通项公式,并证明数列{a}是等差数列;nn(Ⅲ)如果数列{b}满足a=logb,请证明数列{b}是等比数列,并求其前n项和T.nn2nnn【答案】(Ⅰ)a=S=5,1112232+7a+a=S=2×22×2=13,解得a2=8.(Ⅱ)当n≥2时,an=Sn-Sn-1=32[n2-(n-1)2]+72[n-(n-1)]=3(2n-1)+7=3n+2.22又a1=5满足an=3n+

8、2,∴an=3n+2(n∈N*).∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),∴数列{an}是以5为首项,3为公差的等差数列.(Ⅲ)由已知得bn=2an(n∈N*),nn+1∵bn+1=2an=2an+1-an=23=8(n∈N*),bn23/18又b1=2a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。