数列题型归纳.docx

数列题型归纳.docx

ID:52200159

大小:198.58 KB

页数:14页

时间:2020-03-24

数列题型归纳.docx_第1页
数列题型归纳.docx_第2页
数列题型归纳.docx_第3页
数列题型归纳.docx_第4页
数列题型归纳.docx_第5页
资源描述:

《数列题型归纳.docx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数列一、等差数列与等比数列1.基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。2.等差数列与等比数列的联系1)若数列是等差数列,则数列是等比数列,公比为,其中是常数,是的公差。(a>0且a≠1);2)若数列是等比数列,且,则数列是等差数列,公差为,其中是常数且,是的公比。3)若既是等差数列又是等比数列,则是非零常数数列。3.等差与等比数列的比较等差数列等比数列定义通项公式=+(n-1)d=+(n-k)d=dn+-d求和公式14中项公式A=推广:2=。推广:性质1若m+n=p

2、+q则若m+n=p+q,则。2若成A.P(其中)则也为A.P。若成等比数列(其中),则成等比数列。3.成等差数列。成等比数列。4,4、典型例题分析【题型1】等差数列与等比数列的联系例1(2010陕西文16)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{an}的通项;(Ⅱ)求数列{2an}的前n项和Sn.14【题型2】与“前n项和Sn与通项an”、常用求通项公式的结合例1已知数列{an}的前三项与数列{bn}的前三项对应相同,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,

3、数列{bn+1-bn}是等差数列.求数列{an}与{bn}的通项公式。【题型3】中项公式与最值(数列具有函数的性质)例3(2009汕头一模)在等比数列{an}中,an>0(nN*),公比q(0,1),且a1a5+2a3a5+a2a8=25,a3与as的等比中项为2。(1)求数列{an}的通项公式;(2)设bn=log2an,数列{bn}的前n项和为Sn当最大时,求n的值。14二、数列的前n项和1.前n项和公式Sn的定义:Sn=a1+a2+…an。2.数列求和的方法(1)(1)公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为

4、等差、等比数列的数列;4)常用公式:;;;。(2)分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。(3)倒序相加法:如果一个数列{an},与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法。如:等差数列的前n项和即是用此法推导的。(4)裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。适用于其中{}是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。如:1)和(其中等差)可裂项为:;2)。(

5、根式在分母上时可考虑利用分母有理化,因式相消求和)常见裂项公式:14(1);(2);(3);(4)(5)常见放缩公式:.3.典型例题分析【题型1】公式法例1等比数列的前n项和Sn=2n-p,则=________.14【题型2】分组求和法例1(2010年丰台期末18)数列中,,且点在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)在数列中,依次抽取第3,4,6,…,,…项,组成新数列,试求数列的通项及前项和.【题型3】裂项相消法例3(2010年东城二模19改编)已知数列的前项和为,,,设.(Ⅰ)证明数列是等比数列;(Ⅱ)数列满足,求。144.数

6、列求和的方法(2)(5)错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。如:等比数列的前n项和就是用此法推导的.(6)累加(乘)法(7)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求。(8)其它方法:归纳、猜想、证明;周期数列的求和等等。5.典型例题分析【题型4】错位相减法例1求数列前n项的和.14【题型5】并项求和法例5求=1002-992+982-972+…+22-12【题型6

7、】累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等例6求之和.6.归纳与总结以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。14三、数列的通项公式1.数列的通项公式一个数列{an}的与之间的函数关系,如果可用一个公式an=f(n)来表示,我们就把这个公式叫做这个数列的通项公式.2.通项公式的求法(1)(1)定义法与观察法(合情推理:不完全归纳法):直接利用等差

8、数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目;有的数列可以根据前几项观察出通项公式。(2)公式法:在数列{an}中,前n项和Sn与通项an的关系为:(数列的前n项

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。