资源描述:
《最新5.2.2-第1课时-平行线的判定教学讲义PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.2.2-第1课时-平行线的判定学习目标1.掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行;(重点)2.能够根据平行线的判定方法进行简单的推理.问题1两条不重合的直线的位置关系有哪几种?问题2怎样的两条直线平行?问题3上节课你学了平行线的哪些内容?相交(包括垂直)和平行两种.在同一平面内,不相交的两条直线平行.2.如果两条直线都与第三条直线平行,那么这两条直线互相平行.1.经过直线外一点,有且只有一条直线与已知直线平行.导入新课回顾与思考(3)将其最初和最终的两种特殊位置抽象成几何图形:12l2l1AB(4)由上面的操作过程,你能
2、发现判定两直线平行的方法吗?判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.应用格式:∵∠1=∠2(已知)∴l1∥l2(同位角相等,两直线平行)12l2l1AB总结归纳实验验证练习:下图中若∠1=55°,∠2=55°,直线AB、CD平行吗?为什么?ACEFBD12平行.同位角相等,两直线平行.变式1:如图,∠1=55°,∠2=125°,直线AB与CD平行吗?为什么?ACEFBD12MN平行.同位角相等,两直线平行.变式2:如图,直线AB与CD被直线EF所截,∠1=55°,请添加一个条件使得
3、直线AB与直线CD平行.ACEFBD13254∠3=55°你能说出木工师傅用图中的角尺工具画平行线的道理吗?练一练同位角相等,两直线平行.问题1两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行,那么,能否利用内错角和同旁内角来判定两直线平行呢?如图,由3=2,可推出a//b吗?如何推出?解:∵1=3(已知),3=2(对顶角相等),1=2.a//b(同位角相等,两直线平行).2ba13利用内错角、同旁内角判定两条直线平行二判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线
4、平行.简单说成:内错角相等,两直线平行.2ba13∵∠3=∠2(已知)∴a∥b(内错角相等,两直线平行)应用格式:总结归纳问题2如图,如果1+2=180°,你能判定a//b吗?c解:能,∵1+2=180°(已知)1+3=180°(邻补角的性质)2=3(同角的补角相等)a//b(同位角相等,两直线平行)2ba13判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.应用格式:2ba13∵∠1+∠2=180°(已知)∴a∥b(同旁内角互补,两直线平行)总结归纳①∵∠2=∠6(
5、已知)∴___∥___()②∵∠3=∠5(已知)∴___∥___()③∵∠4+___=180o(已知)∴___∥___()ABCDABCD∠5ABCDAC14235867BD同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行FE典例精析例1:根据条件完成填空.①∵∠1=_____(已知)∴AB∥CE()②∵∠1+_____=180o(已知)∴CD∥BF()③∵∠1+∠5=180o(已知)∴_____∥_____()ABCE∠2④∵∠4+_____=180o(已知)∴CE∥AB()∠3∠313542CFEADB内错角相等,两直线平行
6、同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行练一练:根据条件完成填空.∴AB∥MN(内错角相等,两直线平行.)解:∵∠MCA=∠A(已知)又∵∠DEC=∠B(已知)∴AB∥DE(同位角相等,两直线平行.)∴DE∥MN(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)例2:如图,已知∠MCA=∠A,∠DEC=∠B,那么DE∥MN吗?为什么?AEBCDNM已知∠3=45°,∠1与∠2互余,试说明?解:∵∠1=∠2(对顶角相等)∠1+∠2=90°(已知)∴∠1=∠2=45°∵∠3=45°(已知)∴∠2=∠3∴AB∥
7、CD(内错角相等,两直线平行)123ABCDAB//CD练一练做一做内错角相等,两直线平行.同旁内角互补,两直线平行.做一做同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.1.如图,可以确定AB∥CE的条件是()A.∠2=∠BB.∠1=∠AC.∠3=∠BD.∠3=∠AC123AEBCD当堂练习2.如图,已知∠1=30°,∠2或∠3满足条件____________,则a//b.213abc∠2=150°或∠3=30°3.如图.(1)从∠1=∠4,可以推出∥,理由是.(2)从∠ABC+∠=180°,可以推出AB∥CD,理由是.
8、ABCD12345AB内错角相等,两直线平行CDBCD同旁内角互补,两直线平行(3)从∠=∠,可以推出AD∥BC,理由是.