最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt

最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt

ID:62058632

大小:670.00 KB

页数:30页

时间:2021-04-13

最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt_第1页
最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt_第2页
最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt_第3页
最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt_第4页
最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt_第5页
资源描述:

《最新22.3.实际问题与二次函数(2)教学讲义ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会想起那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。  记忆中的故乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老少,个个手持一把,忽闪忽闪个不停,嘴里叨叨着“怎么这么热”,于是三五成群,聚在大树下,或站着,或随即坐在石头上,手持那把扇子,边唠嗑边乘凉。孩子们却在周围跑跑跳跳,热得满头大汗,不时听到“强子,别跑了,快来我给你扇扇”。孩子们才不听这一套,跑个没完,直到累气喘吁吁,这才一跑一踮地围过了,这时母亲总是,好似生气

2、的样子,边扇边训,“你看热的,跑什么?”此时这把蒲扇,是那么凉快,那么的温馨幸福,有母亲的味道!  蒲扇是中国传统工艺品,在我国已有三千年多年的历史。取材于棕榈树,制作简单,方便携带,且蒲扇的表面光滑,因而,古人常会在上面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即今日的蒲扇,江浙称之为芭蕉扇。六七十年代,人们最常用的就是这种,似圆非圆,轻巧又便宜的蒲扇。  蒲扇流传至今,我的记忆中,它跨越了半个世纪,也走过了我们的半个人生的轨迹,携带着特有的念想,一年年,一天天,流向长长的时间隧道,袅22.3.实际

3、问题与二次函数(2)利润问题一.几个量之间的关系.2.利润、售价、进价的关系:利润=售价-进价1.总价、单价、数量的关系:总价=单价×数量3.总利润、单件利润、数量的关系:总利润=单件利润×数量二.在商品销售中,采用哪些方法增加利润?某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪

4、些变量?哪一个量是自变量?哪些量随之发生了变化?归纳小结:运用二次函数的性质求实际问题的最大值和最小值的一般步骤:求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。解这类题目的一般步骤运用新知有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部

5、售出,售价都是每千克20元(放养期间蟹的重量不变).⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?解:(1)由题意知:P=30+x.⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。解:设总利润为W元,则:W=Q-30×1000-400x=-10x2

6、+500x=-10(x-25)2+6250∴当x=25时,总利润最大,最大利润为6250元。⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?解:由题意知:死蟹的销售额为200x元,活蟹的销售额为(30+x)(1000-10x)元。∴Q关于x的函数关系式:Q=-10x2+900x+30000∴Q=(30+x)(1000-10x)+200x=-10x2+900x+30000x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数。

7、 (1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?1、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:当堂训练(1)设此一次函数解析式为。则解得:k=-1,b=40。所以一次函数解析为。解:设每件产品的销售价应定为x元,所获销售利润为w元,则:答:产品的销售价应定为25元,此时每日获得最大销售利润为225元。(2)要使每日的销售利润最大,每件产品的销售价应定

8、为多少元?此时每日销售利润是多少元?解:设旅行团人数为x人,营业额为y元,则:2、某旅行社组团去外地旅游,30人起组团,每人单价800元。旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元。你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?答:当旅行团的人数是55人时,旅行社可以获得最大营业额,最大营业额30250元。3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。