资源描述:
《2022高考数学一轮复习课时规范练43圆的方程文含解析北师大版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时规X练43 圆的方程基础巩固组1.已知圆x2+y2+kx+2y+k2=0,当圆的面积最大时,圆心的坐标是()A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)2.(2020某某滨州期末)已知圆的方程为x2+y2-6x=0,过点P(1,2)的该圆的所有弦中,最短弦的长为()A.12B.1C.2D.43.已知点P为圆C:(x-1)2+(y-2)2=4上一点,A(0,-6),B(4,0),则
2、PA+PB
3、的最大值为()A.26+2B.26+4C.226+4D.226+24.圆心在x+y=0上,且与x轴交于点A(-3,0)和B(1,0)的圆的方程为()A.(x+1)2
4、+(y-1)2=5B.(x-1)2+(y+1)2=5C.(x-1)2+(y+1)2=5D.(x+1)2+(y-1)2=55.如果圆(x-a)2+(y-a)2=1(a>0)上总存在一点到原点的距离为3,则实数a的取值X围为()A.[2,2]B.[2,22]C.[1,2]D.[1,22]6.(2020某某某某期中)圆x2+y2-2x+4y-3=0上到直线x+y+3=0的距离为22的点的个数为()A.1B.2C.3D.47.(2020,5)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.78.设点P是函数y=-4-(x-1)2图像上的任意一点
5、,点Q坐标为(2a,a-3)(a∈R),则
6、PQ
7、的最小值为. 9.已知等腰三角形ABC,其中顶点A的坐标为(0,0),底边的一个端点B的坐标为(1,1),则另一个端点C的轨迹方程为. 10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程.综合提升组11.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值X围是()A.[-1,1]B.-12,12C.[-2,2]D.-22,2212.(2020某某某某一模)在△ABC中,AB=4,AC=2,A=
8、π3,动点P在以点A为圆心,半径为1的圆上,则PB·PC的最小值为. 13.(2020某某聊城期中)已知曲线方程为x2+y2-2x-4y+m=0.(1)若此曲线是圆,求m的取值X围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O是坐标原点),求m的值.创新应用组14.(2020某某某某三环高中月考)过动点P作圆:(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若
9、PQ
10、=
11、PO
12、(O为坐标原点),则
13、PQ
14、的最小值是. 15.点M(x,y)在曲线C:x2-4x+y2-21=0上运动,t=x2+y2+12x-12y-150-a,且t的最大值为
15、b,若a,b∈R+,则1a+1+1b的最小值为. 参考答案课时规X练43 圆的方程1.D当圆的半径最大时,圆的面积最大,已知圆的一般方程x2+y2+kx+2y+k2=0,其圆心为-k2,-1,半径为r=4-3k22,可知当k=0时,r取最大值,即圆的面积最大时,圆心的坐标为(0,-1),故选D.2.C由x2+y2-6x=0,得(x-3)2+y2=9,所以圆心坐标为(3,0),半径为3.如图所示,当过点P(1,2)的直线与连接P与圆心的直线垂直时,弦AB最短,则最短弦长为232-[(3-1)2+(0-2)2]=2.3.C取AB的中点D(2,-3),则PA+PB=2PD,
16、PA+P
17、B
18、=
19、2PD
20、,
21、PD
22、的最大值为圆心C(1,2)与D(2,-3)的距离d再加半径r,又因为d=1+25=26,所以d+r=26+2.所以
23、2PD
24、的最大值为226+4.即
25、PA+PB
26、的最大值为26+2.故选C.4.A由题意得,圆心在直线x=-1上,又圆心在直线x+y=0上,∴圆心M的坐标为(-1,1).又A(-3,0),半径
27、AM
28、=(-1+3)2+(1-0)2=5,则圆的方程为(x+1)2+(y-1)2=5.故选A.5.B(x-a)2+(y-a)2=1(a>0),圆心为(a,a),半径为1,圆心到原点的距离为2a,如果圆(x-a)2+(y-a)2=1(a>0)上总存在一
29、点到原点的距离为3,即圆心到原点的距离d∈[2,4],即2≤2a≤4⇒2≤a≤22,故选B.6.D圆的标准方程为(x-1)2+(y+2)2=8,表示以C(1,-2)为圆心,以22为半径的圆.圆心到直线x+y+3=0的距离为d=
30、1-2+3
31、2=22=2,故圆x2+y2-2x+4y-3=0上到直线x+y+3=0的距离为22的点共有4个.7.A设圆心C(x,y),则(x-3)2+(y-4)2=1,化简得(x-3)2+(y-4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,以1为半径的圆,所以
32、