欢迎来到天天文库
浏览记录
ID:61739253
大小:302.50 KB
页数:7页
时间:2021-03-14
《2020_2021学年新教材高中数学第六章立体几何初步6.5.2第2课时平面与平面垂直的判定课时作业含解析北师大版必修第二册20210125271.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业(五十一) 平面与平面垂直的判定(建议用时:40分钟)一、选择题1.如果直线l,m与平面α,β,γ满足:β∩γ=l,l∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γA [B错,有可能m与β相交;C错,有可能m与β相交;D错,有可能α与β相交.]2.已知直线a,b与平面α,β,γ,下列能使α⊥β成立的条件是( )A.α⊥γ,β⊥γB.α∩β=a,b⊥a,b⊂βC.a∥β,a∥αD.a∥α,a⊥βD [由a∥α,知α内必有直线l与a平行.而a⊥β,∴l⊥β,∴α⊥β.]3.下列命题中正确的是( )A.平面α和β
2、分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥βC [当平面α和β分别过两条互相垂直且异面的直线时,平面α和β有可能平行,故A错;由直线与平面垂直的判定定理知,B,D错,C正确.]4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A-BCD,则在几何体A-BCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥
3、平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABCD [由已知得BA⊥AD,CD⊥BD,又平面ABD⊥平面BCD,∴CD⊥平面ABD,从而CD⊥AB,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ABC⊥平面ADC.]5.下列不能确定两个平面垂直的是( )A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线bD [如图所示,在正方体ABCD-A1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.]二、
4、填空题6.已知两条不同的直线m,n,两个不同的平面α,β,给出下列结论:①若m垂直于α内的两条相交直线,则m⊥α;②若m∥α,则m平行于α内的所有直线;③若m⊂α,n⊂β,且α∥β,则m∥n;④若n⊂β,n⊥α,则α⊥β.其中正确结论的序号是________.(把正确结论的序号都填上)①④ [①中的内容即为线面垂直的判定定理,故①正确;②中,若m∥α,则m与α内的直线平行或异面,故②错误;③中,两个平行平面内的直线平行或异面,所以③错误;④中的内容为面面垂直的判定定理,故④正确.]7.在正四面体P-ABC中,D,E,F分别是AB,BC,AC的中点,有下列四个命题:①BC∥平面PDF;②平面P
5、DF⊥平面ABC;③DF⊥平面PAE;④平面PAE⊥平面ABC.其中正确命题的序号是________(把所有正确命题的序号都填上).①③④ [因为D,F分别是AB,AC的中点,所以DF∥BC,又DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故①正确;因为E是BC的中点,所以BC⊥AE,BC⊥PE.因为AE∩PE=E,所以BC⊥平面PAE.因为BC⊂平面ABC,所以平面PAE⊥平面ABC,故④正确;因为DF∥BC,所以DF⊥平面PAE,故③正确;只有②不正确.故正确的命题为①③④.]8.α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;
6、③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题________.①③④② [m⊥n,将m和n平移到一起,则确定一平面,∵n⊥β,m⊥α,∴该平面与平面α和平面β的交线也互相垂直,从而平面α和平面β的二面角的平面角为90°,∴α⊥β.故答案为①③④②.]三、解答题9.如图所示,在四棱锥S-ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点.求证:平面EBD⊥平面ABCD.[证明] 连接AC与BD交于O点,连接OE.∵O为AC的中点,E为SA的中点,∴EO∥SC.∵SC⊥平面ABCD,∴EO⊥平面ABCD.又∵EO⊂平面EB
7、D,∴平面EBD⊥平面ABCD.10.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别是CD,DA,AC的中点,求证:平面BEF⊥平面BGD.[证明] ∵AB=BC,G为AC中点,所以AC⊥BG.同理可证AC⊥DG.又∵BG∩DG=G,∴AC⊥平面BGD.∵E,F分别为CD,DA的中点,∴EF∥AC,∴EF⊥平面BGD.又∵EF⊂平面BEF,∴平面BEF⊥平面BGD.11.如图所示,AB是
此文档下载收益归作者所有