数学广角(抽屉原理).doc

数学广角(抽屉原理).doc

ID:61560216

大小:27.50 KB

页数:6页

时间:2021-02-28

数学广角(抽屉原理).doc_第1页
数学广角(抽屉原理).doc_第2页
数学广角(抽屉原理).doc_第3页
数学广角(抽屉原理).doc_第4页
数学广角(抽屉原理).doc_第5页
资源描述:

《数学广角(抽屉原理).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数学广角第一课时《抽屉原理》教学内容:教材第70、71页的例1、例2教学目标:1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。2、会用“抽屉原理”解决简单的实际问题。3、通过操作发展学生的类推能力,形成比较抽象的数学思维。教学重点:认识“抽屉原理”。教学难点:灵活运用“抽屉原理”解决实际问题。教学方法:小组合作,自主探究。教学准备:若干根小棒,4个纸杯。教学过程:一、创设情境,导入新知老师组织学生做“抢椅子”游戏(数学广角第一课时《抽屉原理》教学内容:教材第70、71页的例1、例2教学目标:1、经历“抽屉原理”的探究过程,

2、初步了解“抽屉原理”。2、会用“抽屉原理”解决简单的实际问题。3、通过操作发展学生的类推能力,形成比较抽象的数学思维。教学重点:认识“抽屉原理”。教学难点:灵活运用“抽屉原理”解决实际问题。教学方法:小组合作,自主探究。教学准备:若干根小棒,4个纸杯。教学过程:一、创设情境,导入新知老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。二、自主学习,初步感知(一)出示例1:4枝铅笔,3个文具盒。1、观察猜测猜猜把4枝铅笔放进3个文具盒

3、中会存在什么样的结果?2、自主探究(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。(3)交流讨论,汇报。可能如下:第一种:枚举法。用实物摆一摆,把所有的摆放结果都罗列出来。第二种:假设法。如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。第三种:数的分解。把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数

4、是不小于2的。(4)、比较优化。请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?师:为什么不采用枚举法来验证呢?数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。3、引导发现只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?1、学生尝试自已探究。2、交流探究的结果,可能如下:1)枚举法。共有3种情况

5、。在任何一种结果中,总有一个抽屉至少放进3本书2)假设法。把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。      9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。3、观察发现学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。4、介绍原

6、理。师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。三、应用原理,解决问题完成教材第72页“做一做”第1题四、全课总结,回归生活 1、通过今天的学习你有什么收获?2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?第二课时抽取游戏教学目标知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。过程与方法目标:通过各种活动培养学生自

7、己动手动脑去思考的习惯。情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。教学重难点1.使学生理解抽取问题中的一些基本原理。2.找到抽屉原理问题中被分的物品。教学过程一、创设情境、引入新课:师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?学生思考、发言。师:学习了这节课我们就能解决类似的问题了。二、活动探究、深入了解:(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色

8、的,至少要摸出几个球?1、学生提出猜想。2、用预先准备的学具,小组合作交流。4、小组反馈,师相机板书:3、得出结论:把颜色看作抽屉。有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。(二)研究规律师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。