欢迎来到天天文库
浏览记录
ID:61144554
大小:1.76 MB
页数:23页
时间:2021-01-21
《天津市2020年中考数学试题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2020年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A.10B.C.50D.【答案】A【解析】【分析】根据有理数的加法运算法则计算即可.【详解】解:故选:A.【点睛】本题考查有理数的加法运算法则,熟记有理数的加法运算法则是解题的关键.2.2sin45°的值等于( )A.1B.C.D.2【答案】B【解析】【详解】解:2sin45°=2×故选B3.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模
2、式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.B.C.D.【答案】B【解析】【分析】把小数点向左移动7位,然后根据科学记数法的书写格式写出即可.【详解】解:,故选:B.【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【
3、答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.【点睛】本题考查了轴对称图形知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.右图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】D【解析】【分析】从正面看所得到的图形是主视图,画出从正面看所得到的图形即可.【详解】解:从正面看第一层有两个小正方形,第二层在右边有一个小正方形,第三层在右边有一个小正方形,即:故选:D.【点睛】本题主要考查了三视图,关键是把握好三视图所看方向.
4、6.估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【答案】B【解析】【分析】因为,所以在4到5之间,由此可得出答案.【详解】解:∵,∴.故选:B【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7.方程组的解是()A.B.C.D.【答案】A【解析】【分析】利用加减消元法解出的值即可.【详解】解:①+②得:,解得:,把代入②中得:,解得:,∴方程组的解为:;故选:A.【点睛】本题考查了二元一次方程组的解法——加减消元法和代入消元法,根据具体的方程组选取合适的方法是解决本类题目的关键.8.如图,四边形是正方形,O,D两点的坐标
5、分别是,,点C在第一象限,则点C的坐标是()A.B.C.D.【答案】D【解析】【分析】利用O,D两点的坐标,求出OD的长度,利用正方形的性质求出OB,BC的长度,进而得出C点的坐标即可.【详解】解:∵O,D两点的坐标分别是,,∴OD=6,∵四边形是正方形,∴OB⊥BC,OB=BC=6∴C点的坐标为:,故选:D.【点睛】本题主要考查了点的坐标和正方形的性质,正确求出OB,BC的长度是解决本题的关键.9.计算的结果是()A.B.C.1D.【答案】A【解析】【分析】本题可先通分,继而进行因式约分求解本题.【详解】,因为,故.故选:A.【点睛】本题考查分式的加减运算,主要运算技巧包括
6、通分,约分,同时常用平方差、完全平方公式作为解题工具.10.若点都在反比例函数的图象上,则的大小关系是()A.B.C.D.【答案】C【解析】【分析】因为A,B,C三点均在反比例函数上,故可将点代入函数,求解,然后直接比较大小即可.【详解】将A,B,C三点分别代入,可求得,比较其大小可得:.故选:C.【点睛】本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.11.如图,在中,,将绕点C顺时针旋转得到,使点B的对应点E恰好落在边上,点A的对应点为D,延长交于点F,则下列结论一定正确的是()A.B.C.D.【答案】D【解析】【分析
7、】本题可通过旋转的性质得出△ABC与△DEC全等,故可判断A选项;可利用相似的性质结合反证法判断B,C选项;最后根据角的互换,直角互余判断D选项.【详解】由已知得:△ABC△DEC,则AC=DC,∠A=∠D,∠B=∠CED,故A选项错误;∵∠A=∠A,∠B=∠CED=∠AEF,故△AEF△ABC,则,假设BC=EF,则有AE=AB,由图显然可知AEAB,故假设BC=EF不成立,故B选项错误;假设∠AEF=∠D,则∠CED=∠AEF=∠D,故△CED为等腰直角三角形,即△ABC为等腰直角三角形,因为题干信
此文档下载收益归作者所有