欢迎来到天天文库
浏览记录
ID:61046800
大小:373.00 KB
页数:11页
时间:2021-01-20
《2020_2021学年高中数学第一章立体几何初步1.6.1垂直关系的判定课时分层作业含解析北师大版必修2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业九垂直关系的判定一、选择题(每小题5分,共30分)1.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是( )①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.A.①③B.②C.②④D.①②④【解析】选A.由线面垂直的判定定理知,直线垂直于①③图形所在的平面;对于②④图形中的两边不一定是相交直线,所以该直线与它们所在的平面不一定垂直.2.在四棱锥的四个侧面中,直角三角形最多可有( )A.1个 B.2个 C.3个 D.4个【解析】选D.如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A
2、1-ABCD,则此四棱锥的四个侧面都是直角三角形.3.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )A.平行B.垂直相交C.垂直但不相交D.相交但不垂直【解析】选C.因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.4.在正方体ABCD-A1B1C1D1中,与BC1垂直的平面是( )A.平面DD1C1CB.平面A1B1CDC.平面A1B1C1D1D.平面
3、A1DB【解析】选B.因为易证BC1⊥B1C,且CD⊥平面BCC1B1,所以CD⊥BC1.因为B1C∩CD=C,所以BC1⊥平面A1B1CD.5.如图所示,正方形SG1G2G3中,E,F分别是G1G2、G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有( )A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.GD⊥平面SEF【解析】选A.折叠后,有些线线的位置关系不发生变化,如SG⊥GF,SG⊥GE.所以SG⊥平面GEF.6.已知三条相交
4、于一点的线段PA,PB,PC两两垂直,PH⊥平面ABC于点H,则垂足H是△ABC的( )A.外心B.内心C.垂心D.重心【解析】选C.因为PA⊥PB,PA⊥PC,PB∩PC=P,所以PA⊥平面PBC,因为BC平面PBC,所以PA⊥BC.因为PH⊥平面ABC,所以PH⊥BC.又PA∩PH=P,所以BC⊥平面PAH,所以BC⊥AH.同理可证AB⊥CH,AC⊥BH,所以H为△ABC的垂心.二、填空题(每小题5分,共10分)7.已知四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,则平面PBD与平面PAC的位置关系是_________. 【解析】因为
5、PA⊥平面ABCD,所以PA⊥BD,在正方形ABCD中,BD⊥AC.又AC∩PA=A,所以BD⊥平面PAC.又BD平面PBD,所以平面PBD⊥平面PAC.答案:垂直8.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形一定是_________. 【解析】如图,由PA⊥平面ABCD得PA⊥BD.又PC⊥BD,所以BD⊥平面PAC,所以BD⊥AC,平行四边形ABCD为菱形.答案:菱形三、解答题(每小题10分,共20分)9.如图,在四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.求证:S
6、D⊥平面SAB.【证明】因为AB∥CD,BC⊥CD,AB=BC=2,CD=1,所以底面ABCD为直角梯形,AD==.因为侧面SAB为等边三角形,所以SA=SB=AB=2.又SD=1,所以AD2=SA2+SD2,所以SD⊥SA.连接BD,则BD==,所以BD2=SD2+SB2,所以SD⊥SB.又SA∩SB=S,所以SD⊥平面SAB.10.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.求证:平面ABM⊥平面A1B1M.【证明】由长方体的性质可知A1B1⊥平面BCC1B1,又BM平面BCC1B1,所以A1B1⊥
7、BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M==,同理BM==,又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M,因为BM平面ABM,所以平面ABM⊥平面A1B1M.一、选择题(每小题5分,共25分)1.已知直线a∥直线b,b⊥平面α,则( )A.a∥αB.aαC.a⊥αD.a是α的斜线【解析】选C.2.如图,BC是Rt△ABC的斜边,过A作△ABC所在平面α的垂线AP,连接PB,PC,过A作AD⊥BC于D,连接PD,那么图中直角三角形的个数是
8、( )A.4个B.6个C.7个D.8个【解析】选D.由图中△ABC,△APC,
此文档下载收益归作者所有