广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc

广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc

ID:60914466

大小:736.50 KB

页数:13页

时间:2021-01-02

广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc_第1页
广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc_第2页
广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc_第3页
广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc_第4页
广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc_第5页
资源描述:

《广东省梅州市2018—2019学年高一上学期期末考试数学试题及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、广东省梅州市2018-2019学年高一上学期期末考试数学试题(解析版)一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A.B.C.D.【答案】D【解析】∵,,∴.选D.2.  A.B.C.D.【答案】D【解析】【分析】利用诱导公式及特殊角的三角函数值计算,即可得到结果.【详解】由题意,,故选:D.【点睛】本题主要考查了三角函数的诱导公式化简、求值,其中解答中熟记三角函数的诱导公式,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.3.如图所示,D是的边AB的中点,则向量  A.B.C.D.【答案】A【解析】【分析】

2、根据向量加法的三角形法则知,,由D是中点和相反向量的定义,对向量进行转化.【详解】由题意,根据三角形法则和D是的边AB的中点得,,所以,故选:A.【点睛】本题主要考查了平面向量加法的三角形法的应用,其中解答中结合图形和题意,合理利用平面向量的三角形法则化简是解答的关键,着重考查了推理与运算能力,属于基础题.4.函数的图象的一个对称中心为  A.B.C.D.【答案】C【解析】【分析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心.【详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为.故选:C.【点睛】本题主要考查了正切函数的图

3、象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.5.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】试题分析:因为的图象向左平移个单位得到函数的图象,所以要得到函数的图象,只需要将函数的图象向左平移个单位,故选A.考点:三角函数的平移变换.6.设,,,则a,b,c的大小关系是  A.B.C.D.【答案】A【解析】【分析】利用函数,,的单调性,借助于0和1,即可对a、b、c比较大小,得到答案

4、.【详解】由题意,可知函数是定义域上的增函数,,又是定义域上的增函数,,又是定义域上的减函数,,所以,故选A.【点睛】本题主要考查了函数值的比较大小问题,其中解答中熟记指数函数、对数函数的单调性,借助指数函数、对数函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.7.若,且,则的值是  A.B.C.D.【答案】B【解析】【分析】由已知利用同角三角函数基本关系式可求,的值,即可得解.【详解】由题意,知,且,所以,则,.故选:B.【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的

5、基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.8.函数的图象大致是  A.B.C.D.【答案】A【解析】【分析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案.【详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选:A.【点睛】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.9.函数的值域为()A.B.C.D.【答案】C【解析】试题分析:因为又因为,所以函数

6、的值域为,故选C.考点:1.同角三角函数的基本关系式;2.三角函数的图像与性质;3.二次函数.10.已知函数,且,则  A.B.0C.D.3【答案】D【解析】【分析】分别求和,联立方程组,进行求解,即可得到答案.【详解】由题意,函数,且,,则,两式相加得且,即,,则,故选:D.【点睛】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.11.已知是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得,则的值为  A.B.C.D.【答案】C【解析】【分析】由题意

7、画出图形,把、都用表示,然后代入数量积公式求解,即可得到答案.【详解】解:如图所示,因为、E分别是边AB、BC的中点,且,.故选:C.【点睛】本题主要考查了平面向量的基本定理的应用,以及平面向量的数量积的运算,其中解答中熟记平面向量的加法、减法的三角形法则,以及数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于中档试题.12.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=()A.0B.C.D.1【答案】C【解析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识。如图,由函数的图象可知,若关于的方程恰有5

8、个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。