欢迎来到天天文库
浏览记录
ID:6082978
大小:27.00 KB
页数:4页
时间:2018-01-02
《浅谈启发式教学论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浅谈启发式教学兰红梅多少年来一直摸索教学的有效方法,最给力的还是启发式教学。那么如何正确运用启发式教学呢?结合自己的小学数学教学实践,谈几点粗浅的看法。一、启发式教学应重"导"而非"牵"。“启发”一词,来源于我国古代教育家孔子教学的一句格言:“子曰:‘不愤不启,不悱不发。举一隅不以三隅反,则不复也’。”意思是,引导而不是牵着学生鼻子走,鼓励而不是压抑学生,点拨而不是把答案全部端给学生。如今,启发式的教学思想已不再局限于"不愤不启,不悱不发"的具体情景状态,现代素质教育对启发式教学的要求是在如何教会学生学习和思考上下功夫
2、,“导”已成为现代启发式教学思想的特点、策略和核心所在。但也存在导而牵的误区,具体表现为:第一,教师扶着学生走路,不肯放手,只满足课堂上就某一具体问题的师生对答方式,把学生的思想限制在教师思维框架内,客观上限制了学生的求异思想和创造性。第二,不教点金之术,即不教学生学习方法,学生只能顺其意,而未能继其志。针对这种现象,我认为在数学教学时应采取思路教学,采取"大处导,小处启"的策略,运用提纲契领——分析——综合的方法训练学生,把教材思路转化为教师自己的思路,再引导学生形成有个人特色的新思路。例如在教学乘数是三位数的乘法时
3、,由于学生已经掌握乘数是一位数、两位数乘法的计算方法,重点让学生理解"用乘数百位上的数去乘被乘数,末位与百位对齐"的结论。为了今后继续学习乘数是多位数的乘法,我认为这样设计教学比较合理:一、复习:笔算,67×8,167×28二、试算:167×128,让学生自己动手计算,通过学生的观察、比较,不难算出正确答案。然后让学生自己总结计算方法。这就在数学教学中体现了教学思路。为学生今后的学习打下了良好的基础。 二、启发式教学应注重"启"和"试"相结合一切教学活动都必须以调动学生的积极性、主动性、创造性为出发点,引导学生主动探索
4、,积极思维,通过自己的活动达到生动活泼的发展。这是因为"事物发展的根本原因在于事物内部的矛盾性".学生的发展归根结底必须依赖其自身的主观努力。一切外在影响因素只有转化为学生的内在需要,引起学生强烈追求和主动进取时,才能发挥其对学生身心素质的巨大塑造力。因此,素质教育对启发式教学赋予了更新的内涵:坚持教师的主导和学生的主体相结合,注重教师的“启发”和学生的“尝试”相结合。首先,尝试可以使学生获得成功的喜悦,面对全体学生而言,“不求个个升学,但愿人人成功”是符合求学者的意愿和现实的。不论是优生还是差生,都可以从尝试中获得成
5、功,大大增强学生的学习信心,为他们获取新的成功准备良好的心理条件。其次,通过启发、引导学生动眼、动脑、动口、动手的尝试,既培养了学生的智力和能力,又使学生在亲自尝试中感受到学习的乐趣,把枯燥乏味的"苦学"变为主动有趣的"乐学".这就要求教师要尽可能增大学生学习的自由度,尽量启发、引导学生自己去尝试新知识,发现新问题。 例如,在教学"20以内的退位减法",教师让同桌二人分别扮演售货员和顾客,商店里有15支铅笔,卖出9支,还剩几支?教师启发学生可以通过各种途径自己发现计算方法,学生积极主动地探求计算方法。有的用小棒一根一根
6、地数,得出15-9=6;有的把15分成10和5先算10-9=1,再算1+5=6;有的把9分成5和4,先算15-5=10,再算10-4=6;有的先算15-10=5,再算5+1=6;有的想9+()=15,因为9+6=15,所以15-9=6.这样,人人动脑筋尝试发现,方法多种多样,人人都获得了成功。接着教师出示同类的问题,启发学生把这种算法应用到同类问题中。这样教学,学生真正成为学习的主人,达到了学思结合。三、启发式教学应注重启发点的"准"和"巧"医生治病讲求对症下药,教师的启发当然要点在要害处,拨在迷惑时,才能指给学生"柳
7、暗花明又一村".因而,启发式教学要真正达到启迪思维,培养智能,提高学生素质的目的,还必须注重启发点的优化。一是要"准",让启发启在关键处,启在新旧知识的联接处。小学数学知识有很强的系统性,许多新知识是在旧知识的基础上产生发展的。因此,在教学中教师要对学生加强运用旧知识学习新知识的指导。首先新课前的复习和新课的提问要精心设计启发点,把握问题的关键,真正起到启发、点拨和迁移作用。其次,要重视新旧知识之间的联系和发展,注意在新旧知识的连接点,分化点的关键处,设置有层次,有坡度,有启发性、符合学生认知规律的系列提问。让学生独立
8、思考,积极练习求得新知,掌握规律。然后教师引导学生把新旧知识串在一起,形成知识的系统结构。例如,推导平行四边形与长方形的关系。教学时,在复习了长方形和平行四边形的特征和长方形的面积公式之后,可以用出示图形的宽、高、长、底接着提问:(1)平行四边形和长方形的长有什么关系?(2)平行四边形的高和长方形的宽有什么关系?(3)底与长,高与
此文档下载收益归作者所有