欢迎来到天天文库
浏览记录
ID:59916715
大小:18.40 KB
页数:2页
时间:2020-11-27
《《实际问题与二次函数》学案设计1(数学人教九上)-1.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积问题典案三学案设计【学习目标】1.经历探索实际问题中两个变量的变化过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.【重点难点】重难点:用抛物线知识解决实际问题.【预习导学】一、自学指导.自学:自学课本P49~50,自学“探究1”,能根据几何图形及相互关系建立二次函数关系式,体会二次函数这一模型的意义.总结归纳:图象是抛物线的,可设其解析式为y=ax2+bx+c或y=a(x-h)2+k,再寻找条件,利用二次函数的知识解决问题;实际问题
2、中没有坐标系,应建立适当的坐标系,再根据图象和二次函数的知识解决实际问题.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.1.用长16m的绳子围成如图所示的矩形框,使矩形框的面积最大,那么这个矩形框的最大面积是3223_m.2.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是(A)A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C是AB的三等分点时,S最大第2题图第3题图3.如图,某水渠的横断面是等腰梯形,底角为
3、120°,两腰与下底的和为4cm,当水渠深x为233时,横断面面积最大,最大面积是433.点拨精讲:先列出函数的解析式,再根据其增减性确定最值.【合作探究】一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.探究1某窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长为15m(图中所有线条长度之和),当x等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?(结果精确到0.01m)解:由题意可知4y+1×2πx+6x=15,化简得y=15-6x-πx,设窗户的面积为Sm2,24则S=12+2x×15-6x-πx=-
4、3x2+15x=1.25m2πx42x,∵a=-3<0,∴S有最大值.∴当时,S最大值≈4.69(m2),即当x=1.25m时,窗户通过的光线最多.此时,窗户的面积是4.69m2.点拨精讲:中间线段用x的代数式来表示,要充分利用几何关系;要注意顶点的横坐标是否在自变量x的取值范围内.探究2如图,从一张矩形纸片较短的边上找一点E,过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?解:设矩形纸较短边长为a,设DE=x,则AE=a-x,那么两个正方形的面积和y为2+(a-x)2=2x2-2ax+
5、a2,当x=--2a112-2a×12=12y=x=最小值2×22a时,y=2×(2a)2a+a2a.即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.点拨精讲:此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.1.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x米.①用含x的式子表示横向甬道的面积;②当三条甬道的总面积
6、是梯形面积的八分之一时,求甬道的宽;③根据设计的要求,甬道的宽不能超过6米,如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?点拨精讲:想象把所有的阴影部分拼在一起就是一个小梯形.点拨精讲:解答抛物线形实际问题的一般思路:1.把实际问题中的已知条件转化为数学问题;2.建立适当的平面直角坐标系,把已知条件转化为坐标系中点的坐标;3.求抛物线的解析式;4.利用抛物线解析式结合图象解决实际问题.【课堂小结】学生总结本
7、堂课的收获与困惑.
此文档下载收益归作者所有