资源描述:
《抛物线的几何性质PPT优秀课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4.2抛物线的简单几何性质(1)一、温故知新(一)圆锥曲线的统一定义平面内,到定点F的距离与到定直线l的距离比为常数e的点的轨迹,当e>1时,是双曲线.当00)(2)开口向左y2=-2px(p>0)(3)开口向上x2=2py(p>0)(4)开口向下x2=-2py(p>0)范围1、由抛物线y2=2px(p>0)有所以抛物线的范围为二、探索新知如何研究抛物线y2=2px(p>0)的几何性质?对
2、称性2、关于x轴对称即点(x,-y)也在抛物线上,故抛物线y2=2px(p>0)关于x轴对称.则(-y)2=2px若点(x,y)在抛物线上,即满足y2=2px,顶点3、定义:抛物线与它的轴的交点叫做抛物线的顶点。y2=2px(p>0)中,令y=0,则x=0.即:抛物线y2=2px(p>0)的顶点(0,0).离心率4、P(x,y)抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。由定义知,抛物线y2=2px(p>0)的离心率为e=1.xyOFABy2=2px2p过焦点而垂直于对称轴的弦AB,称为抛
3、物线的通径,利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图.
4、AB
5、=2p通径5、2p越大,抛物线张口越大.连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。
6、PF
7、=x0+p/2焦半径公式:焦半径6、xyOFP方程图形准线焦点对称轴x轴x轴y轴y轴xFOylxFOylxFOylxFOyl归纳:(1)、抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;(2)、抛物线只有一条对称轴,没有对称中心;(3)、抛物线只有一个顶点,一个焦点,一条准线;(4)、抛物线的离心率e是确定的为
8、1,⑸、抛物线的通径为2P,2p越大,抛物线的张口越大.因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2, ),解:所以设方程为:又因为点M在抛物线上:所以:因此所求抛物线标准方程为:例1:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2, ),求它的标准方程.三、典例精析探照灯、汽车前灯的反光曲面,手电筒的反光镜面、太阳灶的镜面都是抛物镜面。抛物镜面:抛物线绕其对称轴旋转而成的曲面。灯泡放在抛物线的焦点位置上,通过镜面反射就变成了平行光束,这就是探照灯、汽车前灯、手电筒的设计原理。
9、平行光线射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳灶能把光能转化为热能的理论依据。例2:探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处。已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点位置。xyO(40,30)解:所在平面内建立直角坐标系,使反射镜的顶点与原点重合,x轴垂直于灯口直径.在探照灯的轴截面设抛物线的标准方程为:y2=2px由条件可得A(40,30),代入方程得:302=2p·40解之:p=故所求抛物线的标准方程为:y2=x,焦点为(,0)24
10、l例3:图中是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水下降1米后,水面宽多少?xoAy若在水面上有一宽为2米,高为1.6米的船只,能否安全通过拱桥?思考题2BA(2,-2)x2=-2yB(1,y)y=-0.5B到水面的距离为1.5米不能安全通过y=-3代入得例题3(1)已知点A(-2,3)与抛物线的焦点的距离是5,则P=。(2)抛物线的弦AB垂直x轴,若
11、AB
12、=,则焦点到AB的距离为。42(3)已知直线x-y=2与抛物线交于A、B两点,那么线段AB的中点坐标是。四、课堂练习5.点A的坐标为(
13、3,1),若P是抛物线上的一动点,F是抛物线的焦点,则
14、PA
15、+
16、PF
17、的最小值为()(A)3(B)4(C)5(D)64、求满足下列条件的抛物线的标准方程:(1)焦点在直线x-2y-4=0上.(2)焦点在轴x上且截直线2x-y+1=0所得的弦长为6、已知Q(4,0),P为抛物线上任一点,则
18、PQ
19、的最小值为()A.B.C.D.BC五、归纳总结抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;抛物线只有一条对称轴,没有对称中心;抛物线的离心率是确定的,等于1;抛物线只有一个顶点,一个焦点,一条准线;
20、抛物线的通径为2P,2p越大,抛物线的张口越大.1、范围:2、对称性:3、顶点:4、离心率:5、通径:6、光学性质:从焦点出发的光线,通过抛物线反射就变成了平行光束.再见!85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布]86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌