资源描述:
《《抛物线的几何性质》课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、抛物线的几何性质结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几何性质:(1)范围(2)对称性(3)顶点类比探索x≥0,y∈R关于x轴对称,对称轴又叫抛物线的轴.抛物线和它的轴的交点.(4)离心率(5)焦半径(6)通径始终为常数1通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。
2、PF
3、=x0+p/2xOyFP通径的长度:2P思考:通径是抛物线的焦点弦中最短的弦吗?特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对
4、称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;5.抛物线标准方程中的p对抛物线开口的影响.P越大,开口越开阔图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤0x∈R(0,0)x轴y轴1例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点M(2,)的抛物线有几条,求它的标准方程,例2.斜率为1的直线
5、L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my(m≠0)),可避免讨论y2=4x焦点弦的长度练习:1.过抛物线的焦点,作倾斜角为的直线,则被抛物线截得的弦长为y2=8x2.过抛物线的焦点做倾斜角为的直线L,设L交抛物线于A,B两点,(1)求
6、AB
7、;(2)求
8、AB
9、的最小值.方程图形范围对称性顶点焦半径焦点弦的长度y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0
10、)lFyxOlFyxOlFyxOx≥0y∈Rx≤0y∈Rx∈Ry≥0y≤0x∈RlFyxO关于x轴对称关于x轴对称关于y轴对称关于y轴对称(0,0)(0,0)(0,0)(0,0)例3.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.xOyFABD练习:P72T3.4yOxBA等腰直角三角形AOB内接于抛物线y2=2px(P>0),O为抛物线的顶点,OA⊥OB,则ΔAOB的面积为A.8p2B.4p2C.2p2D.p21、已知
11、抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是.2、一个正三角形的三个顶点,都在抛物线上,其中一个顶点为坐标原点,则这个三角形的面积为。例2、已知直线l:x=2p与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.证明:由题意得,A(2p,2p),B(2p,-2p)所以=1,=-1因此OA⊥OB推广1若直线l过定点(2p,0)且与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.xyOy2=2pxABL:x=2pC(2p,0)xyOy2=2px
12、ABlC(2p,0)证明:设l的方程为y=k(x-2p)或x=2p所以OA⊥OB.代入y2=2px得,可知又直线l过定点(2p,0)推广2:若直线l与抛物线=2px(p>0)交于A、B两点,且OA⊥OB,则__________xyOy2=2pxABlC(2p,0)验证:由得所以直线l的方程为即而因为OA⊥OB,可知推出,代入得到直线l的方程为所以直线过定点(2p,0).高考链接:过定点Q(2p,0)的直线与y2=2px(p>0)交于相异两点A、B,以线段AB为直径作圆H(H为圆心),试证明抛物线顶点
13、在圆H上。小结:1.掌握抛物线的几何性质:范围、对称性、顶点、离心率、通径;2.会利用抛物线的几何性质求抛物线的标准方程、焦点坐标及解决其它问题;