欢迎来到天天文库
浏览记录
ID:59520356
大小:469.50 KB
页数:6页
时间:2020-11-06
《空间向量及其坐标运算(A).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、9.7空间向量及其坐标运算(B)【教学目标】掌握空间点的坐标及向量的坐标和向量的坐标运算法则、空间中两点间距离及两向量的夹角公式的坐标、∥的坐标表示;会求平面的法向量。培养学生的建系意识,并能用空间向量知识解决有关问题。【知识梳理】1.空间向量的直角坐标运算律:(1),则,,,,,.(2)若,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标2模长公式:若,,.3.夹角公式:.4.两点间的距离公式:若,,【点击双基】1.若a=(2x,1,3),b=(1,-2y,9),如果a与b为共线向量,则A.x=1,y=1B.x=,y=-C.x=,y=-D.
2、x=-,y=解析:∵a=(2x,1,3)与b=(1,-2y,9)共线,故有==.∴x=,y=-.应选C.答案:C2.在空间直角坐标系中,已知点P(x,y,z),下列叙述中正确的个数是①点P关于x轴对称点的坐标是P1(x,-y,z)②点P关于yOz平面对称点的坐标是P2(x,-y,-z)③点P关于y轴对称点的坐标是P3(x,-y,z)④点P关于原点对称的点的坐标是P4(-x,-y,-z)A.3B.2C.1D.0解析:P关于x轴的对称点为P1(x,-y,-z),关于yOz平面的对称点为P2(-x,y,z),关于y轴的对称点为P3(-x,y,-z).故①②③错误.答案:C3.已知向量
3、a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k值是A.1B.C.D.解析:ka+b=k(1,1,0)+(-1,0,2)=(k-1,k,2),2a-b=2(1,1,0)-(-1,0,2)=(3,2,-2).∵两向量垂直,∴3(k-1)+2k-2×2=0.∴k=.答案:D4.已知空间三点A(1,1,1)、B(-1,0,4)、C(2,-2,3),则与的夹角θ的大小是_________.解析:=(-2,-1,3),=(-1,3,-2),cos〈,〉===-,∴θ=〈,〉=120°.答案:120°5.已知点A(1,2,1)、B(-1,3,4)、D(1,1,1
4、),若,则
5、
6、的值是__________.解析:设点P(x,y,z),则由=2,得(x-1,y-2,z-1)=2(-1-x,3-y,4-z),即则
7、
8、==.答案:【典例剖析】【例1】已知=(2,2,1),=(4,5,3),求平面ABC的单位法向量.即∴n=(,-1,1),单位法向量n0=±=±(,-,).解:设面ABC的法向量n=(x,y,1),则n⊥且n⊥,即n·=0,且n·=0,即2x+2y+1=0,4x+5y+3=0,特别提示一般情况下求法向量用待定系数法.由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n的某个坐标设为1,再求另两个坐标.平面法向量是垂直于平面
9、的向量,故法向量的相反向量也是法向量,所以本题的单位法向量应有两解.【例2】在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=,SB=.(1)求证:SC⊥BC;(2)求SC与AB所成角的余弦值.解法一:如下图,取A为原点,AB、AS分别为y、z轴建立空间直角坐标系,则有AC=2,BC=,SB=,得B(0,,0)、S(0,0,2)、C(2,,0),=(2,,-2),=(-2,,0).(1)∵·=0,∴SC⊥BC.(2)设SC与AB所成的角为α,∵=(0,,0),·=4,
10、
11、
12、
13、=4,∴cosα=,即为所求.解法二:(1)∵SA⊥面ABC,AC⊥BC,AC
14、是斜线SC在平面ABC内的射影,∴SC⊥BC.(2)如下图,过点C作CD∥AB,过点A作AD∥BC交CD于点D,连结SD、SC,则∠SCD为异面直线SC与AB所成的角.∵四边形ABCD是平行四边形,CD=,SA=2,SD===5,∴在△SDC中,由余弦定理得cos∠SCD=,即为所求.特别提示本题(1)采用的是“定量”与“定性”两种证法.题(2)的解法一应用向量的数量积直接计算,避免了作辅助线、平移转化的麻烦,但需建立恰当的坐标系;解法二虽然避免了建系,但要选点、平移、作辅助线、解三角形.【例3】如下图,直棱柱ABC—A1B1C1的底面△ABC中,CA=CB=1,∠BCA=90
15、°,棱AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos〈〉的值;(3)求证:A1B⊥C1M.(1)解:依题意得B(0,1,0),N(1,0,1),∴||==.(2)解:A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2),∴=(1,-1,2),=(0,1,2),·=3,||=,||=.∴cos〈,〉==.(3)证明:C1(0,0,2),M(,,2),=(-1,1,-2),=(,,0),∴·=0,∴A1B⊥C1M.深化拓展根据本题条件,还可以求
此文档下载收益归作者所有