欢迎来到天天文库
浏览记录
ID:59343957
大小:365.50 KB
页数:9页
时间:2020-09-04
《第19讲 立体几何中的建系设点问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十九讲立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为轴与底面的交点2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)
2、尽可能的让底面上更多的点位于轴上(2)找角:轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足轴成右手系,所以在标轴时要注意。4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。6、与垂直相关的定理与结论:(1)线面垂直:①如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面
3、垂直②两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):①正方形,矩形,直角梯形②等腰三角形底边上的中线与底边垂直(三线合一)③菱形的对角线相互垂直④勾股定理逆定理:若,则(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1)坐标轴上的点,例如在正方体(长度为1)中的点,坐标特点如下:轴:轴:轴:规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底
4、面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出点的坐标,位置关系清晰明了2、空间中在底面投影为特殊位置的点:如果在底面的投影为,那么(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的点,其投影为,而所以,而其到底面的距离为,故坐标为以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用
5、到第三个方法:3、需要计算的点①中点坐标公式:,则中点,图中的等中点坐标均可计算②利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求点的坐标,如果使用向量计算,则设,可直接写出,观察向量,而,二、典型例题:例1:在三棱锥中,平面,,分别是棱的中点,,试建立适当的空间直角坐标系并确定各点坐标例2:在长方体中,分别是棱上的点,,,建立适当的直角坐标系并写出点的坐标例3:如图,在等腰梯形中,,
6、,平面,且,建立适当的直角坐标系并确定各点坐标。例4:已知四边形满足,是中点,将翻折成,使得平面平面,为中点例5:如图,已知四棱锥的底面是菱形,对角线交于点,且平面,点为的三等分点(靠近),建立适当的直角坐标系并求各点坐标例6:如图所示的多面体中,已知正方形与直角梯形所在的平面互相垂直,,试建立适当的空间直角坐标系并确定各点坐标例7:如图,在三棱柱中,是正方形的中心,平面,,建立适当的坐标系并确定各点坐标例8:如图,在四棱柱中,侧棱,,,,且点和分别为的中点。建立合适的空间直角坐标系并写出各点坐标例9:如图:已知平面,点在上,
7、且,四边形为直角梯形,,建立适当的坐标系并求出各点坐标例10:已知斜三棱柱在底面上的射影恰为的中点,又知,建立适当的空间直角坐标系并确定各点坐标
此文档下载收益归作者所有