第63炼立体几何的中地建系设点问的题目

第63炼立体几何的中地建系设点问的题目

ID:29666063

大小:1.02 MB

页数:12页

时间:2018-12-21

第63炼立体几何的中地建系设点问的题目_第1页
第63炼立体几何的中地建系设点问的题目_第2页
第63炼立体几何的中地建系设点问的题目_第3页
第63炼立体几何的中地建系设点问的题目_第4页
第63炼立体几何的中地建系设点问的题目_第5页
资源描述:

《第63炼立体几何的中地建系设点问的题目》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案第63炼立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为轴与底面的交点2、轴的选取:此为坐标是否易于写出的关键,有这么

2、几个原则值得参考:(1)尽可能的让底面上更多的点位于轴上(2)找角:轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足轴成右手系,所以在标轴时要注意。4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。6、与垂直相关的定理与结论:(1)线面垂直:①如果一条直线与一个平面上的

3、两条相交直线垂直,则这条直线与该平面垂直②两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直精彩文档实用标准文案③两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):①正方形,矩形,直角梯形②等腰三角形底边上的中线与底边垂直(三线合一)③菱形的对角线相互垂直④勾股定理逆定理:若,则(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1)坐标轴上的点,例如在正方体(长度为1)中的点,坐标特点如下

4、:轴:轴:轴:规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出点的坐标,位置关系清晰明了2、空间中在底面投影为特殊位置的点:如果在底面的投影为,那么(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的点,其投影为,而所以,而其到底面的距离为,故

5、坐标为以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法:3、需要计算的点精彩文档实用标准文案①中点坐标公式:,则中点,图中的等中点坐标均可计算②利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求点的坐标,如果使用向量计算,则设,可直接写出,观察向量,而,二、典型例题:例1:在三棱锥中,平面,,分别是棱的中点,,试建立适当的空间直角坐标系并

6、确定各点坐标解:平面两两垂直以为轴建立直角坐标系坐标轴上的点:中点:中点中点中点综上所述:小炼有话说:本讲中为了体现某些点坐标的来历,在例题的过程中进行详细书写。这些过程在解答题中可以省略。精彩文档实用标准文案例2:在长方体中,分别是棱上的点,,,建立适当的直角坐标系并写出点的坐标思路:建系方式显而易见,长方体两两垂直,本题所给的是线段的比例,如果设等,则点的坐标都含有,不便于计算。对待此类问题可以通过设单位长度,从而使得坐标都为具体的数。解:因为长方体两两垂直以为轴如图建系,设为单位长度例3:如图,在等腰梯形中,

7、,,平面,且,建立适当的直角坐标系并确定各点坐标。思路:本题直接有一个线面垂直,所以只需在平面找过的相互垂直的直线即可。由题意,不是直角。所以可以以其中一条边为轴,在底面上作垂线即可构造出两两垂直的条件,进而可以建立坐标系方案一:(选择为轴),连结可知在中精彩文档实用标准文案由可解得平面以为坐标轴如图建系:方案二(以为轴)过作的垂线平面以为坐标轴如图建系:(同方案一)计算可得:小炼有话说:建立坐标系的最重要的条件就是线面垂直(即轴),对于轴的选取,如果没有已知线段,可以以垂足所在的某一条直线为坐标轴,然后作这条轴的

8、垂线来确定另一条轴,本题中的两个方案就是选过垂足的直线为轴建立的坐标系。例4:已知四边形满足,是中点,将翻折成,使得平面平面,为中点思路:在处理翻折问题时,首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。本题在翻折时,是等边三角形,四边形为的菱形是不变的,寻找线面垂直时,根据平面平面,结合是等边三角形精彩文档实用标准文案,可取中点,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。