资源描述:
《2012考研数学一真题答案(完整版).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.数一参考答案一、选择题12345678CCBDCBAD二、填空题x339、e;10、;11、1,1,1;12、;13、2;14、2124三、解答题(15)21xx证明:令fxxlncosx1,f(x)是偶函数1x21x2xfxlnsinxx21x1xf00221121x4xfxcosx121x1x1x244cosx12022221x1xfxf00所以21xx即证得:xlncosx11x11x2(16)222222xyxyxyfx,y2222exexe1x0x解:22xyfx,y2xey0yP11,0,P21,0得驻点;..
2、22222xyxyfx,y2222xee1xx2x222xyfx,y22e1xyxy222xyfx,y22xey12y根据判断极值的第二充分条件,把P11,0,P11,0,代入二阶偏导数B=0,A>0,C>0,所以为极小值点,极小值为1f1,0e2把P21,0P21,0代入二阶偏导数B=0,A<0,C<0,所以为极大值点,极大值为12f1,0e(17)解:(Ⅰ)收敛域24n4n32(n1)1x2an(x)2n14n4n32(n1)122Rlimlimlimxx22na(x)n4(n1)4(n1)3n2n14(n1)4(n1)
3、3n12n1x2(n1)12令x1,得1x1,当x1时,技术发散。所以,收敛域为(1,1)(Ⅱ)设224n4n32n(2n1)22n2n22nS(x)xx[(2n1)xx](x1)n02n1n02n1n02n12n22n令S1(x)(2n1)x,S2(x)xn0n02n1xx2n2n1x因为S1(t)dt(2n1)tdtx2(x1)001xn0n02x1x所以S1(x)(2)22(x1)1x(1x)22n1因为xS2(x)xn02n12n2n1所以[xS2(x)]2x2x22(x1)n0n01x;..xx1x111x所以[t
4、S2(t)]dt22dt()dtln(x1)0001t1t1t1xx1x1x即xS2(x)0ln,故xS2(x)ln1x1x11x当x0时,S2(x)lnx1x当x0时,S1(0)1,S2(0)221x11xlnx(1,0)(0,1)22所以,S(x)S1(x)S2(x)(1x)x1x3x0(18)解:dysint曲线L在任一处(x,y)的切线斜率为,过该点(x,y)处的切线为dxf(t)sintYcost(Xf(t))。令Y0得Xf(t)cottf(t)。由于曲线L与x轴和y轴f(t)的交点到切点的距离恒为1.22'故有[
5、f(t)cottf(t)f(t)]cost1,又因为f(t)0(0t)2sint所以f(t),两边同时取不定积分可得f(t)lnsecttantsintC,又由于cottf(0)0,所以C=0故函数f(t)lnsecttantsint此曲线L与x轴和y轴所围成的无边界的区域的面积为:2Scostf(t)dt04(19)解:补充曲线L1沿y轴由点(2,0)到点(0,0),D为曲线L和L1围城的区域。由格林公式可得2323原式=3xydx(xx2y)dy3xydx(xx2y)dyLL1L122=(3x13x)d(2y)dy1d2
6、ydyDL1DL11212222212ydyy4004222(20)解:;..(I)1a001a0a0001a0414A=101aa(1)1a01a001a00101aa001(II)对方程组Ax的增广矩阵初等行变换:1a0011a0011a00101a0101a0101a01001a0001a0001a0232a00100a01a00a1aa1a00101a01001a0420001aaa42可知,要使方程组Ax有无穷多解,则有1a0且aa0,可知a11100101101此时,方程组Ax的增广矩阵变为,进一步化为最简形得0
7、01100000010010100101111可知导出组的基础解系为,非齐次方程的特解为,故其通解001101000000101011为k1010(21)解:(1)TT由二次型的秩为2,知r(AA)2,故r(A)r(AA)2对矩阵A初等变换得10110110110101101101101110a00a100a100a10a10a1001a000;..因r(A)2,所以a1202T(2)令BAA022224202202102EB022(2)22(2)122(2)(6)0224024024所以B的特征值为10,22,36T对于1
8、0,解(1EB)X0得对应的特征向量为1(1,1,1)T对于22,解(2EB)X0得对应的特征向量为2(1,1,0)T对于36,解(3EB)X0得对应的特征向量为3(1,1,2)将1,2,3单位化可得1111111,1,11213261021113260111T正交矩阵Q,则QAQ2326