资源描述:
《2015届高考数学第一轮总复习 26 幂函数与二次函数 文 新人教A版ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六节幂函数与二次函数考试说明内容知识要求了解(A)理解(B)掌握(C)幂函数的概念√幂函数y=x,y=x2,y=x3,y=,y=的图象及其变化情况√二次函数√三年考题13年(1考):浙江T712年(3考):福建T15 北京T14 山东T1211年(2考):陕西T4 浙江T10考情播报1.幂函数、二次函数的图象与性质的应用是高考命题的热点2.常与一元二次不等式、一元二次方程等知识交汇命题,考查数形结合思想3.题型主要以选择题、填空题为主,另外在解答题中常与导数的应用综合,属中高档题【知识梳理】1.幂函数(1)定义:形如_____
2、(α∈R)的函数叫幂函数,其中x是_______,α是常数.(2)幂函数y=x,y=x2,y=x3,y=,y=x-1的图象与性质:y=xα自变量函数y=xy=x2y=x3y=y=x-1定义域________________________值域______________________________奇偶性__________________________________________单调性____________________________________________________________________
3、_______________________________________________________________RRR{x
4、x≥0}{x
5、x≠0}R{y
6、y≥0}R{y
7、y≥0}{y
8、y≠0}奇函数偶函数奇函数非奇非偶函数奇函数在R上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递增在R上单调递增在(0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减函数y=xy=x2y=x3y=y=x-1图象公共点______(1,1)2.二次函数(1)解析式:ax2+bx+c(h,k)(2)图象与性质:函 数y=
9、ax2+bx+c(a>0)y=ax2+bx+c(a<0)图 象定义域RR值 域函 数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)单调性在上递减,在上递增在上递增,在上递减奇偶性当____时为偶函数对称轴函数的图象关于成轴对称b=0【考点自测】1.(思考)给出下列命题:①函数y=2x是幂函数;②如果幂函数的图象与坐标轴相交,则交点一定是原点;③当n<0时,幂函数y=xn是定义域上的减函数;④二次函数y=ax2+bx+c,x∈[m,n]的最值一定是⑤关于x的不等式ax2+bx+c>0恒成立的充要条件是其中正确的是()
10、A.①③B.②C.③④D.④⑤【解析】选B.①错误,不符合幂函数的定义.②正确,因若相交,则x=0得y=0,若y=0,则得x=0.③错误,幂函数y=x-1在定义域上不单调.④错误,当-∉[m,n]时,二次函数的最值,在区间端点达到,而非⑤错误,由ax2+bx+c>0恒成立不一定有因为a可以为0.2.函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-5,-3)上( )A.先减后增B.先增后减C.单调递减D.单调递增【解析】选D.因为f(x)=(m-1)x2+2mx+3为偶函数,所以2m=0,所以m=0.则f(
11、x)=-x2+3在(-5,-3)上是增函数.3.已知函数f(x)=ax2+x+5的图象在x轴上方,则a的取值范围是()【解析】选C.由已知得解得a>4.图中C1,C2,C3为三个幂函数y=xk在第一象限内的图象,则解析式中指数k的值依次可以是( )A.-1,,3B.-1,3,C.,-1,3D.,3,-1【解析】选A.设C1,C2,C3对应的k值分别为k1,k2,k3,则k1<0,01,故选A.5.(2014·株洲模拟)如果函数f(x)=x2+(a+2)x+b(x∈[a,b])的图象关于直线x=1对称,则函数f
12、(x)的最小值为.【解析】由已知得解得所以f(x)=x2-2x+6=(x-1)2+5,x∈[-4,6].故f(x)min=f(1)=5.答案:5考点1幂函数及其图象与性质【典例1】(1)(2014·恩施模拟)若则a,b,c的大小关系是()A.a
13、定m的值,最后根据的大小,求解关于a的不等式.【规范解答】(1)选D.因为y=在第一象限内是增函数,所以因为y=是减函数,所以所以b