欢迎来到天天文库
浏览记录
ID:58786323
大小:46.50 KB
页数:2页
时间:2020-09-29
《高中数学第四章导数及其应用导数在研究函数中的应用4.3.1利用导数研究函数的单调性当堂检测卷湘教版选修2.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯名校名师推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4.3.1利用导数研究函数的单调性1.函数f(x)=x+lnx在(0,6)上是()A.单调增函数B.单调减函数11C.在0,上是减函数,在,6上是增函数ee11D.在0,上是增函数,在,6上是减函数ee答案A1解析∵x∈(0,6)时,f′(x)=1+>0,∴函数在(0,6)上单调递增.x2.f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()答案D解析由导函数的图象可知,当x<0时,f′(x)
2、>0,即函数f(x)为增函数;当0<x<2时,f′(x)<0,即f(x)为减函数;当x>2时,f′(x)>0,即函数f(x)为增函数.观察选项易知D正确.323.若函数f(x)=x-ax-x+6在(0,1)内单调递减,则实数a的取值范围是()A.[1,+∞)B.a=11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯名校名师推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯C.(-∞,1]D.(0,1)答案A2解析∵f′(x)=3x-2ax-1,又f(x)在(0,1)内单调递减,2∴不等式3x-2ax-1≤0在(0,1)内恒成立,∴f′(0)≤0,
3、且f′(1)≤0,∴a≥1.24.函数y=x-4x+a的增区间为________,减区间为________.答案(2,+∞)(-∞,2)解析y′=2x-4,令y′>0,得x>2;令y′<0,得x<2,2所以y=x-4x+a的增区间为(2,+∞),减区间为(-∞,2).1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f(x)的单调区间的一般步骤为(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)
4、<0;(4)根据(3)的结果确定函数f(x)的单调区间.2
此文档下载收益归作者所有