资源描述:
《不等式的几种证明方法及简单应用.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、不等式的几种证明方法及简单应用--------------------------------------------------------------------------作者:_____________--------------------------------------------------------------------------日期:_____________本科毕业论文不等式的几种证明方法及简单应用姓名院系数学与计算机科学学院专业数学与应用数学班级学号指导教师答辩日期成绩不等式的几种证明方法及简单应用摘要我们在
2、数学的学习过程中,不等式很重要.其中不等式的证明方法在不等式基础理论中非常重要.文中总结了部分证明不等式的常用方法:作差法、分析法、作商法、综合法、反证法、数学归纳法、放缩法等,和不等式的证明经常会利用函数极值、拉格朗日中值定理等,以及部分著名不等式,比如:均值不等式、柯西不等式等.进而使不等式证明方法变的更加的多样化,研究不等式证明、探索不等式的证明使不等式证明更加完善.【关键词】:不等式,常用方法,函数,著名不等式MethodandapplicationofseveralsimpleproofofinequalityAbstractWe
3、areintheprocesoflearningmathamatics,inequalltyisveryimportentwhichmethodInequalityInequalityBasictheoryisveryimportentpapersumnarizesthecommonmethodssectionprovesinequallty:fordifferemcemethod,analysis,ForLaw,andInequalitysynthesismethod,contradiction,mathematicalinductian
4、,scalingmethedoftenbenefitWithfunctionextreme,Lagrangemeanvaluetheoren,aswellassamewell-knawninequallties,suchas:meaninequality,Ceuchyinequallty,eta.andthusmakeinequalityproofbecamesmoredivorse,researahinequalltypravedprabeProofcableinequalitymakesinequalityprovedtobemorep
5、erfect.【KeyWords】:inequality,thecommonlyusedmethod,function,famousinequalities目录一、常用方法......................................................................................1(一)比较法......................................................................................1(二)分析法.
6、.....................................................................................2(三)综合法......................................................................................3(四)反证法......................................................................................3(
7、五)迭合法......................................................................................4(六)放缩法......................................................................................4(七)数学归纳法................................................................................
8、5(八)换元法..................................................................................