独立重复试验与二项分布课件.ppt

独立重复试验与二项分布课件.ppt

ID:58562414

大小:3.14 MB

页数:42页

时间:2020-09-06

独立重复试验与二项分布课件.ppt_第1页
独立重复试验与二项分布课件.ppt_第2页
独立重复试验与二项分布课件.ppt_第3页
独立重复试验与二项分布课件.ppt_第4页
独立重复试验与二项分布课件.ppt_第5页
资源描述:

《独立重复试验与二项分布课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§2.2.3独立重复试验与二项分布学校:凌海市第三高级中学授课人:焦龙“三个臭皮匠,顶个诸葛亮”6060%问题:假如臭皮匠老三解出的把握也只有60%,那么这三个臭皮匠中至少有一个能解出的把握真能抵过诸葛亮吗?复习引入思考:它们共同特点:1).每次试验是在同样的条件下重复进行的;2).各次试验中的事件是相互独立的;3).每次试验都只有两种结果:发生与不发生;4).每次试验某事件发生的概率是相同的.n次独立重复试验一般地,在在相同条件下,重复做的n次试验称为n次独立重复试验。独立:每次试验都独立;重复:重复了n次。

2、1).依次投掷四枚质地不同的硬币,3次正面向上;2).某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中;3).口袋装有5个白球,3个红球,2个黑球,从中依次抽取5个球,恰好抽出4个白球;×√×判断下列试验是不是独立重复试验:思考:投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?那么恰好出现0次、2次、3次的概率是多少?你能给出一个统一的公式吗?探究:如果在1次试验中,事件A出现的概率为p,则在n次试验中,A恰好出现k次的概率

3、为:(其中k=0,1,2,···,n)实验总次数事件A发生的概率事件A发生的次数独立重复试验的概率公式及结构特点:此时我们称随机变量X服从二项分布,记作:X01…k…np……在n次独立重复试验中,设事件A发生的次数是X,且在每次试验中事件A发生的概率是p,那么事件A恰好发生k次的概率是为于是得到随机变量X的概率分布如下:(q=1-p)二项分布是(p+q)n展开式第k+1项吗?例1、某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中。(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率。(结果

4、保留两个有效数字)设X为击中目标的次数,则X~B(10,0.8)(1)在10次射击中,恰有8次击中目标的概率为(2)在10次射击中,至少8次击中目标的概率为变式训练已知一个射手每次击中目标的概率为,求他在三次射击中下列事件发生的概率。(1)命中一次;(2)恰在第三次命中目标;(3)命中两次;(4)刚好在第二、第三两次击中目标。例2、实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).⑴试求甲打完5局才能取胜的概率.⑵按比赛规则甲获胜的概率.变式训练1名学生每天骑自行车

5、上学,从家到学校的途中有5个交通岗,假设他在交通岗遇到红灯的事件是独立的,并且概率都是1/3.(1)求这名学生在途中遇到3次红灯的概率.(2)求这名学生在途中至少遇到一次红灯的概率.例3、设诸葛亮解出题目的概率是0.9,三个臭皮匠各自独立解出的概率都是0.6,皮匠中至少一人解出题目即胜出比赛,列出皮匠中解出题目人数的分布列,并计算诸葛亮和臭皮匠团队哪个胜出的可能性大?解:设皮匠中解出题目的人数为X,则X的分布列:解出的人数x0123概率P解1:(直接法)解2:(间接法)至少一人解出的概率为:因为,所以臭皮匠胜出

6、的可能性较大变式训练某射手有5发子弹,射击一次命中的概率为0.9,如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列.1.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.2.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=pk(1-p)n-k,k=0,1,2,…,n.在利用该公式时一定要审清公式中的n,k各是多少.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每

7、名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人,求该人参加过培训的概率;(2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列.考点突破以解答题的形式考查二项分布的概念、特征以及相关计算是高考对本节内容的常规考法.16年辽宁高考将二项分布同相互独立事件、互斥事件和对立事件概率的求解以及分布列等相结合考查,是一个新的考查方向.(2016·辽宁高

8、考)(12分)某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比.(1)设X表示目标被击中的次数,求X的分布列;(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).[考题印证]1.(2009·上海高考)若事件E与F相互独立,且P(E)=P(F

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。