资源描述:
《高三数学教案:空间的平行直线与异面直线1.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:9.2空间的平行直线与异面直线(一)教学目的:1.会判断两条直线的位置关系.2.理解公理四,并能运用公理四证明线线平行.3.掌握等角定理,并能运用它解决有关问题.4.了解平移的概念,初步了解平几中成立的结论哪些在立几中成立5.掌握空间两直线的位置关系,掌握异面直线的概念,会用反证法和异面直线的判定定理证明两直线异面;6.掌握异面直线所成角的概念及异面直线垂直的概念,能求出一些较特殊的异面直线所成的角教学重点:公理4及等角定理的运用异面直线所成的角.教学难点:公理4及等角定理的运用异面直线所成的角.授课类型:新授课课时安排:1课时
2、教具:多媒体、实物投影仪内容分析:本节共有两个知识点,平行直线、异面直线以平行公理和平面基本性质为基础进一步学习平行直线的性质,把平行公理和平行线的传递性推广到空间并引出平移概念,了解了平移的初步性质在这一节还由直线平行的性质学习异面直线及其夹角的概念要求学生正确掌握空间平行直线性质和异面直线及其夹角的概念,这样就为学生学习向量和空间图形的性质打下了基础教学过程:一、复习引入:把一张纸对折几次,为什么它们的折痕平行?(答:把一张长方形的纸对折两次,打开后得4个全等的矩形,每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互
3、相平行的)你还能举出生活中的相关应用的例子吗?二、讲解新课:1空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;..2平行直线(1)公理4:平行于同一条直线的两条直线互相平行推理模式:a//b,b//ca//c.第1页共8页说明:(1)公理4表述的性质叫做空间平行线的传递性;(2)几何学中,通常用互相平行的直线表示空间里一个确定的方向;(3)如果空间图形F的所有点都沿同一个方向移动相同的距离到F的位置,则就说图形F作了一次平移(2)空间四边形:顺
4、次连结不共面的四点A,B,C,D所组成的四边形叫空间四边形,相对顶点的连线AC,BD叫空间四边形的对角线(3)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等分析:在平面内,这个结论我们已经证明成立了.在空间中,这个结论是否成立,还需通过证明.要证明两个角相等,常用的方法有:证明两个三角形全等或相似,则对应角相等;证明两直线平行,则同位角、内错角相等;证明平行四边形,则它的对角相等,等等.根据题意,我们只能证明两个三角形全等或相似,为此需要构造两个三角形,这也是本题证明的关键所在.已知:BAC和BAC的
5、边AB//AB,AC//AC,并且方向相同,求证:BACBAC.证明:在BAC和BAC的两边分别截取ADAD,AEAE,∵AD//AD,ADAD,E′C′∴ADDA是平行四边形,A′D′B′∴AA//DD,AADD,同理AA//EE,AAEE,ECD∴EE//DD,EEDDAB,即DEED是平行四边形,∴EDED,∴ADEADE,所以,BACBAC.(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成
6、角的基础.3.空间两条异面直线的画法abbD1C1A1B1baaDCAB第2页共8页4.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:A,B,l,BlAB与l是异面直线证明:(反证法)假设直线AB与l共面,∵B,l,Bl,∴点B和l确定的平面为,∴直线AB与l共面于,∴A,与A矛盾,所以,AB与l是异面直线.5.异面直线所成的角:已知两条异面直线a,b,经过空间任一点O作直线a//a,b//b,a,b所成的角的大小与点O的选择ab′无关,把a,b所成的锐角(或直角)叫异面直线a,
7、b所成的角bO(或夹角).为了简便,点O通常取在异面直线的一条上异面直线所成的角的范围:(0,]26.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b垂直,记作ab.7.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求三、讲解范例:例1已知四边形ABCD是空间四边形,E、H分别是AB、AD的中点,F、G分别是边CB、CD上的点,且CFCG2,CBCD3求证:四边形EFGH是梯形
8、AEH分析:梯形就是一组对边平行且不相等的四边形考虑哪BD组对边会平行呢?为什么?(平行公理)证明对边不相GF等可以利用平行线分线段成比例证明:如图,连接BDC∵EH是△ABD的中位线,∴EH//BD,EH=1BD.2又