人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt

人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt

ID:58528759

大小:1.54 MB

页数:23页

时间:2020-10-21

人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt_第1页
人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt_第2页
人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt_第3页
人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt_第4页
人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt_第5页
资源描述:

《人教版高中必修1-函数的基本性质-函数的单调性-课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3.1函数的单调性函数的基本性质武彦国072思考1:观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律复习:我们在初中已经学习了函数图象的画法。下面,我们将按照列表、描点、连线等步骤画出函数的图象。(1)列表x-2-1012y41014(2)描点(3)连线(用光滑的曲线连接)得到的图象如图所示。x0y1124-1-2复习引入引入:从函数的图象看到图象在y轴的右侧部分是上升的,也就是说,当x在区间[0,+)上取值时,随着x的增大,相应的y值也随着增大,这时我们就说函数y=f(x)=在[0,

2、+)上是增函数。图象在y轴的左侧部分是下降的,也就是说,当x在区间(-,0)上取值时,随着x的增大,相应的y值反而随着减小,这时我们就说函数y=f(x)=在(-,0)上是减函数。yxO1124-1-2那么应该如何用数学语言来描述并给出增函数与减函数的定义呢?思考:函数f(x)=x2:则f(x1)=,f(x2)=x12x22∴函数f(x)=x2在(0,+∞)上是增函数。都有xy0x1x2f(x1)f(x2)在(0,+∞)上任取x1、x2,因此在f(x)在(0,+∞)上,当x增大时,函数值y相应地随着增大。这与

3、观察图象所得结果是一致的。所以f(x)在(0,+∞)上是增函数。x12x22对任意x1

4、x1)>f(x2)x如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是。增函数与减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是。xoyy=f(x)x1x2f(x2)f(x1)yxox1x2f(x1)f(x2)y=f(x)增函数减函数教学新知0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I

5、内在区间I内图象y=f(x)y=f(x)图象特征数量 特征0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升数量 特征0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升数量 特征y随x的增大而增大0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=

6、f(x)图象特征从左至右,图象上升从左至右,图象下降数量 特征y随x的增大而增大0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升从左至右,图象下降数量 特征y随x的增大而增大y随x的增大而减小0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升从左至右,图象下降数量 特征y随x的增大而增大当x1<x2时,f(x

7、1)f(x2)Oxyx1x2f(x1)f(x2)由此得出单调增函数和单调减函数的定义.xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为A,区间IA.设函数y=f(x)的定义域为A,区间IA

8、.当x1那么就说在f(x)这个区间上是单调增函数,I称为f(x)的单调增区间.单调区间那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.如果对于属于定义域A内某个区间I,对任意的x1,x2I如果对于属于定义域A内某个区间I,对任意的x1,x2I如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数在这一区

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。