资源描述:
《中考与圆有关的综合题(含答案).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2011全国中考真题解析-与圆有关的综合题一、选择题1.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是( )A.B.C.D.考点:三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质.专题:计算题.分析:连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a
2、﹣x+b﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出,代入求出y即可.解答:解:C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴,,解得:r=,故本选项正确;A、设圆的半径是x,圆切AC于E,切BC于D,且AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣
3、x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴,∴,解得:y=,故本选项错误;D、求不出圆的半径等于,故本选项错误;故选C.点评:本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.2.如图,△ABC的外接圆上,AB,BC,CA三弧的度数比为12:13:11.自BC上取一点D,过D分别作直线AC,直线AB的并行线,且交于E,F两点,则∠EDF的度
4、数为( )第69页A、55°B、60°C、65°D、70°考点:圆心角、弧、弦的关系;平行线的性质.专题:探究型.分析:先根据AB,BC,CA三弧的度数比为12:13:11求出、的度数,再根据其度数即可求出∠ACB及∠ABC的度数,由平行线的性质即可求出∠FED及∠EFD的度数,由三角形内角和定理即可求出∠EDF的度数.解答:解:∵AB,BC,CA三弧的度数比为12:13:11,∴=×360°=120°,=×360°=110°,∴∠ACB=×120°=60°,∠ABC=×110°=55°,∵AC∥ED,AB∥DF,∴∠FED
5、=∠ABC=55°,∠EFD=∠ACB=60°,∴∠EDF=180°﹣60°﹣55°=65°.故选C.点评:本题考查的是圆心角、弧、弦的关系及平行线的性质,能根据AB,BC,CA三弧的度数比为12:13:11求出∠ABC及∠ACB的度数是解答此题的关键.3.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确( )A、AB>CE>CEB、AB=CE>CDC、AB>CD>CED、AB=CD=CE考点:切线长定理;三角形三边关系
6、;三角形内角和定理.专题:计算题.分析:根据∠1=60°,∠2=65°,利用三角形内角和定理求出∠ABC的度数,然后可得AB>BC>AC,由切线长定理得AC=CD,BC=CE,利用等量代换求得AB>CE>CD即可.解答:解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠ABC>∠1,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选A.点评:此题主要考查切线长定理和三角形三
7、边关系,三角形内角和定理等知识点,解答此题的关键是利用三角形内角和定理求出∠ABC的度数.4.如图,BD为圆O的直径,直线ED为圆O的切线,A.C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?( )A.97°B.104°C.116°D.142°考点:弦切角定理;圆周角定理.分析:先根据直径所对的圆周角为直角得出角BAD的度数,根据角平分线的定义得出角BAF的的度数,再根据弦切角等于它所夹弧对的圆周角,得出角ABD的度数,最后利用三角形内角和定理即可求出角AFB的度数.解答:解:∵BD是
8、圆O的直径,∴∠BAD=90°,第69页又∵AC平分∠BAD,∴∠BAF=∠DAF=45°,∵直线ED为圆O的切线,∴∠ADE=∠ABD=19°,∴∠AFB=180°-∠BAF-∠ABD=180°-45°-19°=116°.故选C.点评:此题考查圆周角定理以及弦切角定理的灵活