定积分简单应用教案.doc

ID:57321442

大小:301.50 KB

页数:4页

时间:2020-08-11

定积分简单应用教案.doc_第1页
定积分简单应用教案.doc_第2页
定积分简单应用教案.doc_第3页
定积分简单应用教案.doc_第4页
资源描述:

《定积分简单应用教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、定积分的简单应用一、教学目标知识与技能:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;让学生深刻理解定积分的几何意义以及微积分的基本定理;初步掌握利用定积分求曲边梯形的几种常见题型及方法;体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。过程与方法:通过实例体会用微积分基本定理求定积分的方法情感、态度与价值观:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。二、教学重点与难点重点曲边梯形面积的求法难点 定积分求体积以及在物理中应用 三、教学过程1、复习1、求曲边梯形的思想方法是什么?2、定

2、积分的几何意义是什么?3、微积分基本定理是什么?2、定积分的应用(一)利用定积分求平面图形的面积例1.计算由两条抛物线和所围成的图形的面积.分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。y=x2Oxy解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。巩固练习计算由曲线和所围成的图形的面积.例2.计算由直线,曲线以及x轴所围图形的面积S.分析:首先画出草图(图1.7一2),并设法把所求图形的面积问题转化为求曲边梯形

3、的面积问题.与例1不同的是,还需把所求图形的面积分成两部分S1和S2.为了确定出被积函数和积分的上、下限,需要求出直线与曲线的交点的横坐标,直线与x轴的交点.解:作出直线,曲线的草图,所求面积为图1.7一2阴影部分的面积.解方程组得直线与曲线的交点的坐标为(8,4).直线与x轴的交点为(4,0).因此,所求图形的面积为S=S1+S2由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.oxy例3.求曲线与直线轴所围成的图形面积。答案:练习xyoy=-x2+4x-31、求直线与抛物线所围成的图形面积。答案:2、求由抛物线及

4、其在点M(0,-3)和N(3,0)处的两条切线所围成的图形的面积。略解:,切线方程分别为、,则所求图形的面积为3、求曲线与曲线以及轴所围成的图形面积。略解:所求图形的面积为xxOy=x2ABC4、在曲线上的某点A处作一切线使之与曲线以及轴所围成的面积为.试求:切点A的坐标以及切线方程.略解:如图由题可设切点坐标为,则切线方程为,切线与轴的交点坐标为,则由题可知有,所以切点坐标与切线方程分别为总结:1、定积分的几何意义是:、轴所围成的图形的面积的代数和,即.因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数的图像与轴围成的图形

5、的面积为4,而其定积分为0.2、求曲边梯形面积的方法与步骤:(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和。3、几种常见的曲边梯形面积的计算方法:(1)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1));②由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2));yabxyabxyabx③由两条曲线与直线图(1)图(2)图(3)所围成的曲边梯形的面积:(如图(3));(二)、定积分在物理中应用(1)求变速直线运动的路程我们知道,作变速直线运

6、动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即例4。一辆汽车的速度一时间曲线如图1.7一3所示.求汽车在这1min行驶的路程.解:由速度一时间曲线可知:因此汽车在这1min行驶的路程是:答:汽车在这1min行驶的路程是1350m.2.变力作功一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移(单位:m),则力F所作的功为W=Fs.探究如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a

7、程一样,可以用“四步曲”解决变力作功问题.可以得到例5.如图1·7一4,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm处,求克服弹力所作的功.解:在弹性限度内,拉伸(或压缩)弹簧所需的力F(x)与弹簧拉伸(或压缩)的长度x成正比,即F(x)=kx,其中常数k是比例系数.由变力作功公式,得到答:克服弹力所作的功为.例6.A、B两站相距7.2km,一辆电车从A站B开往站,电车开出ts后到达途中C点,这一段的速度为1.2t

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《定积分简单应用教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、定积分的简单应用一、教学目标知识与技能:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;让学生深刻理解定积分的几何意义以及微积分的基本定理;初步掌握利用定积分求曲边梯形的几种常见题型及方法;体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。过程与方法:通过实例体会用微积分基本定理求定积分的方法情感、态度与价值观:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。二、教学重点与难点重点曲边梯形面积的求法难点 定积分求体积以及在物理中应用 三、教学过程1、复习1、求曲边梯形的思想方法是什么?2、定

2、积分的几何意义是什么?3、微积分基本定理是什么?2、定积分的应用(一)利用定积分求平面图形的面积例1.计算由两条抛物线和所围成的图形的面积.分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。y=x2Oxy解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。巩固练习计算由曲线和所围成的图形的面积.例2.计算由直线,曲线以及x轴所围图形的面积S.分析:首先画出草图(图1.7一2),并设法把所求图形的面积问题转化为求曲边梯形

3、的面积问题.与例1不同的是,还需把所求图形的面积分成两部分S1和S2.为了确定出被积函数和积分的上、下限,需要求出直线与曲线的交点的横坐标,直线与x轴的交点.解:作出直线,曲线的草图,所求面积为图1.7一2阴影部分的面积.解方程组得直线与曲线的交点的坐标为(8,4).直线与x轴的交点为(4,0).因此,所求图形的面积为S=S1+S2由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.oxy例3.求曲线与直线轴所围成的图形面积。答案:练习xyoy=-x2+4x-31、求直线与抛物线所围成的图形面积。答案:2、求由抛物线及

4、其在点M(0,-3)和N(3,0)处的两条切线所围成的图形的面积。略解:,切线方程分别为、,则所求图形的面积为3、求曲线与曲线以及轴所围成的图形面积。略解:所求图形的面积为xxOy=x2ABC4、在曲线上的某点A处作一切线使之与曲线以及轴所围成的面积为.试求:切点A的坐标以及切线方程.略解:如图由题可设切点坐标为,则切线方程为,切线与轴的交点坐标为,则由题可知有,所以切点坐标与切线方程分别为总结:1、定积分的几何意义是:、轴所围成的图形的面积的代数和,即.因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数的图像与轴围成的图形

5、的面积为4,而其定积分为0.2、求曲边梯形面积的方法与步骤:(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和。3、几种常见的曲边梯形面积的计算方法:(1)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1));②由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2));yabxyabxyabx③由两条曲线与直线图(1)图(2)图(3)所围成的曲边梯形的面积:(如图(3));(二)、定积分在物理中应用(1)求变速直线运动的路程我们知道,作变速直线运

6、动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即例4。一辆汽车的速度一时间曲线如图1.7一3所示.求汽车在这1min行驶的路程.解:由速度一时间曲线可知:因此汽车在这1min行驶的路程是:答:汽车在这1min行驶的路程是1350m.2.变力作功一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移(单位:m),则力F所作的功为W=Fs.探究如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a

7、程一样,可以用“四步曲”解决变力作功问题.可以得到例5.如图1·7一4,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm处,求克服弹力所作的功.解:在弹性限度内,拉伸(或压缩)弹簧所需的力F(x)与弹簧拉伸(或压缩)的长度x成正比,即F(x)=kx,其中常数k是比例系数.由变力作功公式,得到答:克服弹力所作的功为.例6.A、B两站相距7.2km,一辆电车从A站B开往站,电车开出ts后到达途中C点,这一段的速度为1.2t

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭