欢迎来到天天文库
浏览记录
ID:57292870
大小:1.20 MB
页数:26页
时间:2020-08-10
《《生活中的优化问题举例》课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.4生活中的优化问题举例生活中的优化问题举例内容:生活中的优化问题应用:1.海报版面尺寸的设计2.圆柱形饮料罐的容积为定值时,所用材料最省问题3.饮料瓶大小对饮料公司利润有影响问题1:学校宣传海报比赛,要求版心面积128dm左右边距1dm上下边距2dm,请问你将如何设计?例1:海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图3.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm,如何设计海报的尺寸,才能使四周空白面积最小?图3.4-1分析:已知版心的面积,你
2、会如何建立函数关系表示海报四周的面积呢?你还有其他方法求这个最值吗?因此,x=16是函数S(x)的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。解法二:由解法(一)得例2.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?[思路探索]解答本题可先设出未知量,根据已知条件寻求未知量间的关系,写出面积函数,进而用导数法
3、求函数的最值以及取最值时变量的取值.2.在实际应用题目中,若函数f(x)在定义域内只有一个极值点x0,则不需与端点比较,f(x0)即是所求的最大值或最小值.1.设出变量找出函数关系式;(所说区间的也适用于开区间或无穷区间)确定出定义域;所得结果符合问题的实际意义。练习1.一条长为的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?则两个正方形面积和为解:设两段铁丝的长度分别为x,l-x,其中04、包装的要贵些?你想从数学上知道它的道理吗?是不是饮料瓶越大,饮料公司的利润越大?规格(L)21.250.6价格(元)5.14.52.5下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则(1)对消费者而言,选择哪一种更合算呢?(2)对制造商而言,哪一种的利润更大?例3:某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,(1)瓶子半径多大时,能使每瓶饮料的利润最大?(2)瓶子半径多大时,每瓶饮料5、的利润最小?r(0,2)2(2,6]f'(r)0f(r)-+减函数↘增函数↗-1.07p解:由于瓶子的半径为r,所以每瓶饮料的利润是当半径r>2时,f’(r)>0它表示f(r)单调递增,即半径越大,利润越高;当半径r<2时,f’(r)<0它表示f(r)单调递减,即半径越大,利润越低.1.半径为2cm时,利润最小,这时表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值。2.半径为6cm时,利润最大。图1.4-4由上述例子,我们不难发现,解决优化问题的基本思路是:上述解决优化问题的过程是一个典型的数学建模过程。优化问题用函数表示的数学问题用6、导数解决数学问题优化问题的答案解决优化问题的一般步骤:(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问题的主要关系;(2)建模:将文字语言转化成数学语言,利用数学知识,建立相应的数学模型;(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;(4)对结果进行验证评估,定性定量分析,做出正确的判断,确定其答案。注意:实际应用中,准确地列出函数解析式并确定函数的定义域是关键。练习1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子的容积最大?最大容7、积是多少?解:设箱底边长为x,则箱高h=(60-x)/2.箱子容积V(x)=x2h=(60x2-x3)/2(08、数化,问题就易解决练习2:某种圆柱形的饮料罐的容积为定值V时,如何确定它的高与底半径,使得所用材料最省?Rh解:设圆柱的高为h,底面半径为R.则表面积为又(定值),即h=2R.可
4、包装的要贵些?你想从数学上知道它的道理吗?是不是饮料瓶越大,饮料公司的利润越大?规格(L)21.250.6价格(元)5.14.52.5下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则(1)对消费者而言,选择哪一种更合算呢?(2)对制造商而言,哪一种的利润更大?例3:某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,(1)瓶子半径多大时,能使每瓶饮料的利润最大?(2)瓶子半径多大时,每瓶饮料
5、的利润最小?r(0,2)2(2,6]f'(r)0f(r)-+减函数↘增函数↗-1.07p解:由于瓶子的半径为r,所以每瓶饮料的利润是当半径r>2时,f’(r)>0它表示f(r)单调递增,即半径越大,利润越高;当半径r<2时,f’(r)<0它表示f(r)单调递减,即半径越大,利润越低.1.半径为2cm时,利润最小,这时表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值。2.半径为6cm时,利润最大。图1.4-4由上述例子,我们不难发现,解决优化问题的基本思路是:上述解决优化问题的过程是一个典型的数学建模过程。优化问题用函数表示的数学问题用
6、导数解决数学问题优化问题的答案解决优化问题的一般步骤:(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问题的主要关系;(2)建模:将文字语言转化成数学语言,利用数学知识,建立相应的数学模型;(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;(4)对结果进行验证评估,定性定量分析,做出正确的判断,确定其答案。注意:实际应用中,准确地列出函数解析式并确定函数的定义域是关键。练习1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子的容积最大?最大容
7、积是多少?解:设箱底边长为x,则箱高h=(60-x)/2.箱子容积V(x)=x2h=(60x2-x3)/2(08、数化,问题就易解决练习2:某种圆柱形的饮料罐的容积为定值V时,如何确定它的高与底半径,使得所用材料最省?Rh解:设圆柱的高为h,底面半径为R.则表面积为又(定值),即h=2R.可
8、数化,问题就易解决练习2:某种圆柱形的饮料罐的容积为定值V时,如何确定它的高与底半径,使得所用材料最省?Rh解:设圆柱的高为h,底面半径为R.则表面积为又(定值),即h=2R.可
此文档下载收益归作者所有