三角形内切圆课件.ppt

三角形内切圆课件.ppt

ID:57232834

大小:1.45 MB

页数:31页

时间:2020-08-04

三角形内切圆课件.ppt_第1页
三角形内切圆课件.ppt_第2页
三角形内切圆课件.ppt_第3页
三角形内切圆课件.ppt_第4页
三角形内切圆课件.ppt_第5页
资源描述:

《三角形内切圆课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、是否现在的我们确实感觉艰累?既要承受种种外部的压力,更要面对自己内心的煎熬。在苦苦挣扎中,在题海中沐浴,窒息,作呕----是否如果有人向你投以理解的目光,会感到一种生命的暖意,或许仅有短暂的一瞥,就足以令你感奋不已。然而,快乐总有悲伤伴陪,雨过总会是晴天。坚持-----成功越来越近Emmer1、确定一个圆的位置与大小的条件是什么?①.圆心与半径2、叙述角平分线的性质与判定性质:角平分线上的点到这个角的两边的距离相等。判定:到这个角的两边距离相等的点在这个角的平分线上。3、下图中△ABC与圆O的关系?△A

2、BC是圆O的内接三角形;圆O是△ABC的外接圆圆心O点叫△ABC的外心知识回顾或②.不在同一直线上的三点ABCO如图是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?ABCABC三角形的外接圆在实际中很有用,但还有用它不能解决的问题.如三角形的内切圆CBADFEOr思考下列问题:1.如图,若⊙O与∠ABC的两边相切,那么圆心O的位置有什么特点?圆心0在∠ABC的平分线上。2.如图2,如果⊙O与△ABC的内角∠ABC的两边相切,且与内角∠ACB的两边也相切,那么此⊙O的

3、圆心在什么位置?圆心0在∠BAC,∠ABC与∠ACB的三个角的角平分线的交点上。OMABCNO图2ABC探究:三角形内切圆的作法作法:ABC1、作∠B、∠C的平分线BM和CN,交点为I。I2.过点I作ID⊥BC,垂足为D。3.以I为圆心,ID为半径作⊙I.⊙I就是所求的圆。MND试一试:你能画出一个三角形的内切圆吗?这样的圆可以作出几个?为什么?.想一想1∵直线BE和CF只有一个交点I,并且点I到△ABC三边的距离相等(为什么?),∴因此和△ABC三边都相切的圆可以作出一个,并且只能作一个.三角形与圆的

4、位置关系ABCI●┓●EF三角形与圆的位置关系这圆叫做三角形的内切圆.这个三角形叫做圆的外切三角形.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.议一议3老李提示:多边形的边与圆的位置关系称为切.ABC●I定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。1.三角形的内心到三角形各边的距离相等;性质:CBADFEOr2.三角形的内心在三角形的角平分线上;名称确定方法图形性质内心(三角形内切圆的圆心)三角形三边中垂线的交点三角形三条角平

5、分线的交点(1)OA=OB=OC(2)外心不一定在三角形的内部.(1)到三边的距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.外心(三角形外接圆的圆心)定义:和多边形各边都相切的圆叫做,这个多边形叫做。多边形的内切圆圆的外切多边形内切外切如上图,四边形DEFG是⊙O的四边形,⊙O是四边形DEFG的圆,DEFG.O思考:我们所学的平行四边形,矩形,菱形,正方形,等腰梯形中,哪些四边形一定有内切圆?(菱形,正方形一定有内切圆)1.如图1,△ABC是⊙O的三角形。

6、⊙O是△ABC的圆,点O叫△ABC的,它是三角形的交点。外接内接外心三边中垂线2.如图2,△DEF是⊙I的三角形,⊙I是△DEF的圆,点I是△DEF的心,它是三角形的交点。ABCO.图1IDEF.图2外切内切内三条角平分线3.三角形的内切圆能作____个,圆的外切三角形有_____个,三角形的内心在三角形的_______.1无数内部探讨1:(1)任意一个三角形一定有一个外接圆,并且只有一个外接圆.(2)任意一个圆一定有一个内接三角形,并且只有一个内接三角形.(3)任意一个三角形一定有一个内切圆,并且只有

7、一个内切圆.(4)任意一个圆一定有一个外切三角形,并且只有一个外切三角形正确说法有_______________________(1)(3)明确1.一个三角形有且只有一个内切圆;2.一个圆有无数个外切三角形;3.三角形的内心就是三角形三条内角平分线的交点;4.三角形的内心到三角形三边的距离相等。例题赏析4如图,在△ABC中,∠A=68°,点I是内心,求∠BIC的度数问你:若点I是外心呢?(2)若∠A=80°,则∠BOC=度。(3)若∠BOC=100°,则∠A=度。解:13020(1)∵点O是△ABC的内

8、心,∴∠BOC=180°-(∠1+∠3)=180°-(25°+35°)例1如图,在△ABC中,点O是内心,(1)若∠ABC=50°,∠ACB=70°,求∠BOC的度数ABCO=120°)1(32)4(同理∠3=∠4=∠ACB=70°=35°∴∠1=∠2=∠ABC=50°=25°例题赏析1理由:∵点O是△ABC的内心,∴∠1+∠3=(∠ABC+∠ACB)∴∠1=∠ABC,∠3=∠ACB=180°-(90°-∠A)=(180°-∠A)=90

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。