2015年高考数学(文科)真题分类汇编D单元 数列.doc

2015年高考数学(文科)真题分类汇编D单元 数列.doc

ID:57105768

大小:735.00 KB

页数:21页

时间:2020-08-02

2015年高考数学(文科)真题分类汇编D单元 数列.doc_第1页
2015年高考数学(文科)真题分类汇编D单元 数列.doc_第2页
2015年高考数学(文科)真题分类汇编D单元 数列.doc_第3页
2015年高考数学(文科)真题分类汇编D单元 数列.doc_第4页
2015年高考数学(文科)真题分类汇编D单元 数列.doc_第5页
资源描述:

《2015年高考数学(文科)真题分类汇编D单元 数列.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数学D单元 数列D1数列的概念与简单表示法D2等差数列及等差数列前n项和13.D2[2015·安徽卷]已知数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}的前9项和等于________.13.27 [解析]由an=an-1+(n≥2)得,数列{an}是以1为首项,以为公差的等差数列,因此S9=9×1+×=27.19.D2,D3[2015·广东卷]设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.(1)求a4的值;(2)证明:为等比数列

2、;(3)求数列{an}的通项公式.19.D2、D3、D4、D5[2015·湖北卷]设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式;(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.19.解:(1)由题意有,即解得或故或(2)由d>1,知an=2n-1,bn=2n-1,故cn=,于是Tn=1+++++…+, ①Tn=+++++…+. ②①-②可得Tn=2+++…+-=3-,故Tn=6-.7.D2[2015·全

3、国卷Ⅰ]已知{an}是公差为1的等差数列,Sn为{an}的前n项和.若S8=4S4,则a10=(  )A.B.C.10D.127.B [解析]由S8=4S4,得8a1+×1=4,解得a1=,所以a10=+(10-1)×1=.5.D2[2015·全国卷Ⅱ]设Sn是等差数列{an}的前n项和.若a1+a3+a5=3,则S5=(  )A.5B.7C.9D.115.A [解析]因为{an}为等差数列,所以a1+a3+a5=3a3=3,所以a3=1,于是S5==5a3=5.16.D2,D3[2015·北京卷]已知等差数列{an}满足a1+a

4、2=10,a4-a3=2.(1)求{an}的通项公式.(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?16.解:(1)设等差数列{an}的公差为d.因为a4-a3=2,所以d=2.又因为a1+a2=10,所以2a1+d=10,故a1=4.所以an=4+2(n-1)=2n+2(n=1,2,…).(2)设等比数列{bn}的公比为q.因为b2=a3=8,b3=a7=16,所以q=2,b1=4.所以b6=4×26-1=128.由128=2n+2得n=63.所以b6与数列{an}的第63项相等.19.

5、D2、D4[2015·山东卷]已知数列{an}是首项为正数的等差数列,数列的前n项和为.(1)求数列{an}的通项公式;(2)设bn=(an+1)·2an,求数列{bn}的前n项和Tn.19.解:(1)设数列{an}的公差为d.令n=1,得=,所以a1a2=3.令n=2,得+=,所以a2a3=15.解得a1=1,d=2,所以an=2n-1.(2)由(1)知bn=2n·22n-1=n·4n,所以Tn=1×41+2×42+…+n·4n,所以4Tn=1×42+2×43+…+n·4n+1,两式相减,得-3Tn=41+42+…+4n-n·4

6、n+1=-n·4n+1=×4n+1-,所以Tn=×4n+1+=.13.D2[2015·陕西卷]中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.13.5 [解析]设首项为a1,则a1+2015=2×1010,解得a1=5.16.D2,D3,D4[2015·四川卷]设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.(1)求数列{an}的通项公式;(2)设数列的前n项和为Tn,求Tn.16.解:(1)由已知Sn=2an-a1,有an=Sn

7、-Sn-1=2an-2an-1(n≥2),即an=2an-1(n≥2).从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1),所以a1+4a1=2(2a1+1),解得a1=2,所以数列{an}是首项为2,公比为2的等比数列.故an=2n.(2)由(1)得=,所以Tn=++…+==1-.10.D2[2015·浙江卷]已知{an}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=________,d=________.10. -1 [解析]由题意得

8、,a=a2a7,即(a1+2d)2=(a1+d)(a1+6d),所以d(3a1+2d)=0.因为d≠0,所以3a1+2d=0,又2a1+a2=1,所以3a1+d=1,联立解得17.D2,D3,D4[2015·浙江卷]已知数列{an}和{bn}满足a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。