数学物理方程定解问题课件.ppt

数学物理方程定解问题课件.ppt

ID:57016579

大小:896.50 KB

页数:40页

时间:2020-07-26

数学物理方程定解问题课件.ppt_第1页
数学物理方程定解问题课件.ppt_第2页
数学物理方程定解问题课件.ppt_第3页
数学物理方程定解问题课件.ppt_第4页
数学物理方程定解问题课件.ppt_第5页
资源描述:

《数学物理方程定解问题课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数学物理方程定解问题主要内容三类数学物理方程的导出定解条件数学物理方程的分类(自学)(一)梯度矢量令三类数学物理方程的导出有时记记(二)三类数学物理方程的导出1弦的横振动xx+xxu弦的横向位移为u(x,t)考虑小振动xx+xxu记xx+xxu例:一长为l的均匀柔软轻绳,其一端固定在竖直轴上,绳子以角速度转动,试推导此绳相对于水平线的横振动方程xx+xxu弦的横向位移为u(x,t)xulxx+x整理得:x=l端自由2均匀杆的纵振动将细杆分成许多段t时刻,A段伸长t时刻,B段伸长相对伸长事实上,相对伸长是位置的函数,如相对伸长由胡克定律,B两端的张

2、应力(单位横截面的力)分别为B段运动方程为B段运动方程为记3扩散方程由于浓度不同引起的分子运动扩散流强度q,即单位时间内流过单位横截面积的分子数或质量,与浓度u(单位体积内的粒子数)的下降成正比D为扩散系数负号表扩散方向与浓度梯度相反大小x方向左表面,dt时间流入六面体的流量为流出六面体的流量为xx+dxx方向左表面,单位时间流入六面体的流量为单位时间流出六面体的流量为净流入量为x方向净流入量为y方向净流入量为z方向净流入量为立方体净流入量为如立方体内无源和汇dt时间内粒子增加数为D=恒量,令a2=D一维若单位时间内单位体积中产生的粒子数为F=(x,y,z,t

3、)与u无关若单位时间内单位体积中产生的粒子数为b2u4热传导方程设有一根恒截面为A的均匀细杆,沿杆长有温度差,其侧面绝热u(x,t)为x处t时刻温度,为杆密度xxx+x(1)dt时间内引起小段x温度升高所需热量为xxx+x(2)Fourier实验定理:单位时间内流过单位横截面积的热量q(热流强度量)与温度的下降成正比nnk为热传导系数一维情况下如图有大小x方向左表面,dt时间流入圆柱体的热量为dt时间流出圆柱体的热量为xxx+xdt时间净流入的热量为5泊松方程电通量的高斯定理称为泊松方程称为泊松方程称为Laplace方程对于稳定浓度分布有为泊松方程为

4、Laplace方程6稳定浓度分布和若若定解条件输运方程(一)初始条件初始条件要求已知弦振动方程初始条件要求已知位移满足速度满足x=l/2xux=lhx0位移满足速度满足(二)边界条件第一类边界条件第二类边界条件第三类边界条件如两端固定弦,端点位移x=l/2xyx=lhx0(1)第一类边界条件如细杆热传导端点温度l0x(如扩散端点浓度)A)如细杆的纵振动,x=a处受力f(t)(2)第二类边界条件如杆端自由f(t)=0a0x如细杆热传导端点有热量流出如细杆热传导端点有热量流入B)热传导0xa如细杆热传导,x=a端自由冷却则热流强度与杆端u

5、x=a和周围介质温度差

6、有关系(3)第三类边界条件0xax=0处0xa(三)衔接条件x0xy0例:半径为a,表面熏黑的金属长圆柱,受到阳光照射,阳光的方向垂直于柱轴,热流强度为M,写出热传导的边界条件。解:xy阳光照射,流入圆柱的热量为由于温度梯度,因散热流出圆柱的热流为xy设柱面外温度为u0柱面温度u

7、=a由牛顿冷却定律令当M=0时,m=0xy例:一根导热杆由两段构成,两段热传导系数、比热、密度分别为kI,cI,I,kII,cII,II,初始温度为u0,然后保持两端温度为零,写出热传导问题的定解方程。解:第一段第二段衔接条件:温度相等热流相等END

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。