欢迎来到天天文库
浏览记录
ID:57004791
大小:53.50 KB
页数:2页
时间:2020-07-30
《二次函数图像性质表格.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数的图象 1、二次函数的性质函数二次函数a、b、c为常数,a≠0(a、h、k为常数,a≠0) a>0a<0a>0a<0图象 (1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸性(2)对称轴是x=,顶点是()(2)对称轴是x=,顶点是()(2)对称轴是x=h,顶点是(h,k)(2)对称轴是x=h,顶点是(h,k)质(3)当时,y随x的增大而减小;当时,y随x的增大而增大(3)当时,y随x的增大而增大;当时,y随x的增大而减小(3)当时,y随
2、x的增大而减小;当x>h时,y随x的增大而增大。(3)当x<h时,y随x的增大而增大;当x>h时,y随x的增大而减小 (4)抛物线有最低点,当时,y有最小值,(4)抛物线有最高点,当时,y有最大值,(4)抛物线有最低点,当x=h时,y有最小值(4)抛物线有最高点,当x=h时,y有最大值 22、二次函数解析式的几种形式:①一般式:(a、b、c为常数,a≠0)②顶点式:(a、h、k为常数,a≠0),其中(h,k)为顶点坐标。③交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a≠0,(也叫两根式)。3、求抛物线的顶点、对称
3、轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a>0,y有最小值,当x=h时,;若a<0,y有最大值,当x=h时,。②公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若,y有最大值,当4、抛物线与x轴交点情况:对于抛物线①当时,抛物线与x轴有两个交点,反之也成立。②当时,抛物线与x轴有一个交点,反之也成立,此交点即为顶点。③当时,抛物线与x轴无交点,反之也成立。5、求根公式:2
此文档下载收益归作者所有