欢迎来到天天文库
浏览记录
ID:56973583
大小:803.50 KB
页数:14页
时间:2020-07-30
《2015数学中考压轴题前瞻.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【1】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接.(1)若点在反比例函数的图象的同一分支上,如图1,试证明:①;②.图2图1(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论.【1】解:(1)①轴,轴,四边形为矩形.轴,轴,四边形为矩形.轴,轴,四边形均为矩形.1分,,..,,.2分②由(1)知...4分,.5分..6分轴,四边形是平行四边形..7分同理..8分(2)与仍然相等.9分,,又,.10分..,...11分轴,四边形是平行四边形..同理..12分【2】如图,抛物
2、线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.(1)求抛物线对应的函数表达式;(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).【2】解:(1)根据题意,得2分解得抛物线对应的函数表达式为.3分(2)存在.在中,令,得.第2题图令,得,.,,.又,顶点.5分容易求得直线的表达式是.在中,令,得.,.6分在中,令,
3、得..,四边形为平行四边形,此时.8分(3)是等腰直角三角形.第2题图理由:在中,令,得,令,得.直线与坐标轴的交点是,.,.9分又点,..10分由图知,.11分,且.是等腰直角三角形.12分(4)当点是直线上任意一点时,(3)中的结论成立.14分【3】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③
4、所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)【3】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………1分同理,在Rt△DEF中,EG=FD.…………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=CG.…………………………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴
5、△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.∴
6、△MEC为直角三角形.∵MG=CG,∴EG=MC.………8分(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分【4】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.【4】解:(1)圆心在坐标原点,圆的半径为1,点的坐标分别为抛物线与直线交于点,且分别与圆相切于点和点,.点在抛物线上,将的坐标代入,得:解之,得:抛物线的解析式为
7、:.4分(2)抛物线的对称轴为,.6分连结,,,又,,.8分(3)点在抛物线上.9分设过点的直线为:,将点的坐标代入,得:,直线为:.10分过点作圆的切线与轴平行,点的纵坐标为,将代入,得:.点的坐标为,当时,,所以,点在抛物线上.12分【5】如图,抛物线经过三点.第5题图(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若
此文档下载收益归作者所有