欢迎来到天天文库
浏览记录
ID:56720781
大小:2.81 MB
页数:21页
时间:2020-07-06
《2019届河北省保定市高三上学期期末考试数学(理)试题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2019届河北省保定市高三上学期期末考试数学(理)试题一、单选题1.若复数满足,则()A.或B.或C.或D.【答案】A【解析】设z=a+bi(a,b∈R),利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得a,b,则答案可求.【详解】设z=a+bi(a,b∈R),由z2=5+12i,得a2﹣b2+2abi=5+12i,∴,解得或.∴z=3+2i或z=﹣3﹣2i.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.2.函数的零点所在的区间是()A.B.C.D.【答案】B【解析】由于连续函数f(x)满足f(1)<0,f(2)>0
2、,从而得到函数y=x﹣4•()x的零点所在区间.【详解】∵y=x﹣4•()x为R上的连续函数,且f(1)=1﹣2<0,f(2)=2﹣1>0,∴f(1)•f(2)<0,故函数y=x﹣4•()x的零点所在区间为:(1,2),故选:B.【点睛】本题主要考查函数的零点的定义,判断函数的零点所在的区间的方法,属于基础题.3.已知是两条不同的直线,是两个不同的平面,则的一个充分条件是()A.,B.,,C.,,D.,,【答案】C【解析】在A中,a与b相交、平行或异面;在C中,由线面垂直的性质可得a∥b;在B、D中,均可得a与b相交、平行或异面;【详解】由a,b是两条不同的直
3、线,α,β是两个不同的平面,在A中,,,则a与b相交、平行或异面,故A错误;在B中,,,,则a与b相交、平行或异面,故B错误;在C中,由a,,则,又,由线面垂直的性质可知,故C正确;在D中,,,,则a与b相交、平行或异面,故D错误.故选:C.【点睛】本题考查线线平行的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.4.定义运算,则函数的图像是()A.B.C.D.【答案】C【解析】根据新定义可得函数1⊕log2x就是取1与log2x中较大的一个即可判断.【详解】从定义运算a⊕b上看,对于任意的a、b
4、,a⊕b实质上是求a与b中最大的,∴1⊕log2x就是取1与log2x中较大的一个,∴对于对数函数y=log2x,当x≥2,log2x≥1,∴当0<x<2时,f(x)=1.故选:C.【点睛】本题主要考查新定义,求函数的最大值,属于基础题.5.的展开式中,的系数是()A.-160B.-120C.40D.200【答案】B【解析】将问题转化为二项式(1﹣2x)5的展开式的系数问题,求出(1﹣2x)5展开式的通项,分别令r=2,3求出(1﹣2x)5(2+x)的展开式中x3项的系数.【详解】(1﹣2x)5(2+x)的展开式中x3项的系数是(1﹣2x)5展开式中x3项的系
5、数的2倍与(1﹣2x)5展开式中x2项的系数的和∵(1﹣2x)5展开式的通项为Tr+1=(﹣2)rC5rxr令r=3得到x3项的系数为﹣8C53=﹣80令r=2得到x2项的系数为4C52=40所以(1﹣2x)5(2+x)的展开式中x3项的系数是﹣80×2+40=﹣120故答案为:B【点睛】解决二项展开式的特定项问题常利用的工具是二项展开式的通项公式.求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可;(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后
6、求出其参数.6.某几何体的三视图如图所示,则该几何体的体积是()A.36B.32C.30D.27【答案】A【解析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以3为边长的长方形,高为4,分别求出棱锥各个面的面积,进而可得答案.【详解】由已知中的该几何体是一个四棱锥的几何体,四棱锥的底面为边长为3和3的正方形,高为4,故S四棱锥4×3+5×35×34×3+3×3=36.故选:A.【点睛】本题考查的知识点是由三视图求表面积,其中根据三视图判断出几何体的形状,并找出各个面的棱长、高等关键的数据是解答本题的关键.7.若双曲线的一个焦点与抛物线的焦点重
7、合,则双曲线的离心率为()A.4B.3C.2D.【答案】C【解析】先求出抛物线y2=8x的焦点坐标,由此得到双曲线C:1的一个焦点,从而求出a的值,进而得到该双曲线的离心率.【详解】∵抛物线y2=8x的焦点是(2,0),双曲线C:1的一个焦点与抛物线y2=8x的焦点重合,∴c=2,b2=3,m=1,∴e2.故选:C.【点睛】本题考查双曲线的性质和应用,解题时要抛物线的性质进行求解.8.在中,若,(),则当最小时,()A.B.C.D.【答案】A【解析】由已知可求的坐标,然后结合向量数量积的坐标表示及二次函数的性质可求BC最小时的x,结合向量数量积的性质即可求解.
8、【详解】∵(1,2),(﹣x,2x)(
此文档下载收益归作者所有